
Constroid: Data-Centric Access Control for Android

Daniel Schreckling
Department of IT Security
ISL, University of Passau

D-94032 Passau, Germany
ds@sec.uni-passau.de

Joachim Posegga
Department of IT Security
ISL, University of Passau

D-94032 Passau, Germany
jp@sec.uni-passau.de

Daniel Hausknecht
University of Passau

D-94032 Passau, Germany
hausknec@fim.uni-

passau.de

ABSTRACT
We introduce Constroid, a data-centric security policy man-
agement framework for Android. It defines a new middle-
ware which allows the developer to specify well defined data
items of fine granularity. For these data items, Constroid
administrates security policies which are based on the usage
control model. They can only be modified by the user of
an application not by the applications itself. We use Con-
stroid’s middle-ware to protect the security policies, ensure
consistency between a data item and its corresponding secu-
rity policy, and describe how our prototype implementation
can enforce a subset of possible usage control policies. In
this way, our contribution shows how we overcome the rigid
API-driven approach to security in Android. The structure
and implementation of our framework is presented and dis-
cussed in terms of security, performance, and usability.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control ; K.6.5 [Management of Computing and
Information Systems]: Security and Protection—Unau-
thorised access

General Terms
Design, Applied Security

Keywords
access control, usage control, Android, privacy

1. INTRODUCTION
Applications for smart-phones are mainly distributed us-

ing market platforms. Some of them perform shallow checks
on the applications and verify that the developers comply
with the terms of use. Other platforms omit such checks
and rely on the option to withdraw applications in retro-
spect. Application distribution is mainly based on certifi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

cates generated by the market or by the developer. The op-
erating system on the smart-phone checks these certificates
and grants selected access rights requested by the applica-
tion. This process can depend on the security features of
the platform, the requested access, and on the decisions of
a user.

1.1 Access Control in Today’s Smart-Phones
Modern smart-phone operating system use widely deployed

access control mechanisms and sandboxing techniques. These
concepts are mainly based on process privileges (capabili-
ties) or execution profiles [2, 8, 9, 11, 20]. They allow access
to specific resources or processes. Once the access rights are
granted to a particular process, it can perform the respective
operations on the resource. Hence, access rights are selected
for each application individually. Potentially malicious exe-
cution contexts are ignored. As a consequence, access rights
granted to one application may be used by another applica-
tion in a malicious execution context.

There are several approaches which try to improve this
situation by addressing both, the granularity of available se-
curity policies, as well as their consistency. However, they
mainly focus on security policies which control the processes
and not the data processes operate on. As a consequence
these security policies can only have low granularity. All
data processed by the application is subject to the same se-
curity enforcement. Popular examples include access rights
for address books. They often contain private, business, or
public contacts. Once access to this resource is granted data
with very different security requirements can be processed.

Further, the developer has to decide in advance in which
context his application can or must run and which access
rights might be required. Even approaches from the language-
based information security and information flow area mostly
employ static and process-centric access rules for data re-
sources and follow the assumption: Get it all or nothing!
However, in order to implement effective and usable secu-
rity mechanisms for modern smart-phone applications this
granularity is too coarse and too restrictive.

1.2 Contribution
We define a framework which allows for the secure man-

agement and partial enforcement of fine-grained and user-
controlled access control policies in Android: Constroid. A
middle-ware layer is introduced which abstracts from the
actual storage of data on the physical device. Therefore,
the developer has to define the semantic structure of the
data his application processes. The middle-ware provides
the appropriate access operations and offers fine-grained ac-

1478

cess control for each individual item.
Constroid takes a first step to overcome the capability-

and process-centric security model of Android. It addresses
the elemental requirements of users who must guard the pri-
vacy of data but also need to process it with applications
running in various contexts. Instead of specifying whether
an application should be able to perform specific actions on
resources we invert this approach and specify which actions
should be allowed for specific data items. In so doing, we will
be able to counteract applications or groups of applications
which process data in ways not granted by the user.

We structure our contribution as follows: Before Section 3
outlines the basic access control model underlying Constroid,
Section 2 explains the fundamentals of Android and reveals
existing security problems. Afterwards, Section 4 shows how
the usage control model is integrated in the Android system.
Section 5 discusses the influence of Constroid on the An-
droid system architecture in terms of security, performance,
and usability. Finally, Section 6 compares it with related
work and Section 7 concludes our work and outlines future
research.

2. ANDROID FUNDAMENTALS
Android is – apart from some device drivers and the tele-

phony stack – an open-source platform for mobile phones
which was developed by Google. It builds on an embed-
ded Linux and its libraries. They are exposed to appli-
cation developers through the Android application frame-
work implemented in the Java programming language. So,
strictly speaking, Android forms a middle-ware [7] between
a Linux system and the applications determined for the An-
droid platform.

2.1 Application Architecture
Applications run on this middle-ware are executed in the

Dalvik virtual machine (VM). It is register-based and opti-
mised for running on devices with limited resources1.

Applications are delivered in zipped Android Package files
(.apk files). It contains the Java byte-code of an application,
i.e. the Dalvik executable - also called dex file, resources rel-
evant for the user interface or application specific data, as
well as configuration files, e.g. a manifest. During instal-
lation, Android assigns each application a unique user and
group ID.

Android applications support a dynamic and component-
based structure. This allows for the reuse of existing com-
ponents as well as a high adaptability. Four types of compo-
nents are used to assemble applications: activities, services,
content providers, and broadcast receivers [21]. Their execu-
tion is triggered by Android’s application framework.

Application user interfaces are defined by activities. Data
can be passed between activities by either passing param-
eters or by processing return values. Android suspends all
activities which do not have the current focus and allows
only one activity to gain keyboard focus.

In contrast, service components run in the background of
an application. They are commonly used to process time-
consuming or background tasks. Services can be started
during device startup and update relevant databases, sur-
vey sensor inputs, etc. Remote procedure call interfaces are
defined to interact or control such services.

1Available at http://www.dalvikvm.com/ (August 2011)

AddressProviderAddressViewer

1

4 3

2

"App A" "App B"

"Address"
database

Figure 1: Data access using a ContentProvider

Broadcast receivers enable applications to receive mes-
sages broadcasted or sent specifically by other applications.
They sign up for particular message types identified by la-
bels, so called intents. This name is derived from the main
usage of such messages: They express an intent to perform
an action within a component. Broadcast receivers can also
subscribe to general intents such as “display the following
image” or “show this location on a map”. Therefore, broad-
cast receivers in combination with intents, are considered to
form one of the most powerful features of Android.

The fourth component, content providers, offer an inter-
face for sharing data. They basically offer the only way to
make data accessible to other applications as data inher-
its user and group IDs from the application they belong to.
Requests to providers are based on common SQL queries.
The actual data administration and response to queries is
implementation specific to the individual provider.

2.2 Security Architecture
The Dalvik VM simplifies security enforcement in An-

droid. The exchange and reception of intents, the call of
protected APIs, the use of content providers etc. can be
monitored centrally.

For this purpose, every application must provide a man-
ifest. By defining specific permissions an application can
request the right to execute specific API functions, prevent
the launch of activities by other applications, control the
reception or broadcast of intents, can control whether an
application can bind to a service, or whether the applica-
tion can access specific hardware or memory resources. If an
application does not stick to its requested permissions and
tries to access a resource it does not have the right for, the
Android runtime environment throws an exception, notifies
the user, and terminates the execution of this application.

Permissions are granted at install time of an application.
Depending on the protection level, this is done automatically
by the system or if required with user interaction. If at
least one of the requested permissions is not granted, the
installation of an application is aborted. Permissions are
granted statically, i.e. they cannot be revoked or added later.

Android offers several APIs to store application data in
files or databases. Every application possesses a separate
data directory to store this data. To ensure access con-
trol on these files, Android makes use of the traditional ac-
cess control mechanisms deployed in Linux systems using
the unique user and group identifier assigned to an appli-
cation. To exchange data with other applications, Android
applications must define content providers (see Section 2.1).
Access rights to these providers are defined statically in the
manifest. Another option to share data are intents. As ex-
plained above, access to these messages must also be defined
in the applications’ manifest.

Assume a common situation: Application App A wants to
read data managed by application App B. Figure 1 depicts
the single steps required to query data from App B.

1479

Activity AddressViewer displays address information in
App A. App A does not store any address information but
uses the data managed by App B. Android forbids App A
to directly access this data. Therefore, App B implements
the ContentProvider AddressProvider and protects it with a
permission of level dangerous. Permissions of this level must
be approved by the user at install time. Supposed App A
requested this permission and it was granted by the user.

To display an address a, the activity of App A uses the
ContentProvider to query (1) address a. Android’s secu-
rity monitor verifies whether this query is allowed. The Ad-
dressProvider uses the API to pass the received query (2)
to the SQLite database. The SQL query operation returns
a DB cursor that contains address a (3). This cursor is re-
turned to the AddressViewer (4). The Activity of App A
can now read the address data and display it.

2.3 Security Issues and Deficiencies
Android also allows the definition of application specific

access control mechanisms. Applications can delegate the
right to access a particular resource. This resource must be
specified using a URI. An intent sent to the delegated appli-
cation equipped with the correct permissions finally grants
the access. In this way, an image viewer is able to display
email attachments although it is not able to access the whole
mailing database.

With this mechanism the individual developer decides dur-
ing the design and implementation phase, which security
policies fit the user and the application. As a result an appli-
cation requesting data always depends on other applications
which enforce the access permissions. However, stand-alone
applications often require direct access to various resources,
e.g. the address database, the media database, etc. To re-
spect all existing applications and applications potentially
implemented in the future, the developer would have to im-
plement a multitude of access control functions or content
providers.

This reveals another deficiency of Android’s permissions
management: permission assignment. During installation
time, the user must decide which permissions an application
should possess. Effectively, he must consider which permis-
sion could compromise which data. However, if the user
does not accept the demanded permissions the application
will not be installed. Revoking these permissions further
requires the de-installation of the application, their modi-
fication and re-installation. As a consequence, the rights
to application assignment – regardless of the system state,
other applications, or the security requirements of the user
– has to be advanced to implementation time, to the devel-
oper.

Even worse, granting permissions to different applications
may implicitly compromise private data. By granting ac-
cess to other applications the user builds some kind of trust
chain which may not fit all data items this chain can process.
Thus, the user grants – mostly unknowingly – implicit ac-
cess rights to applications. An access control system which
is simply based on assigning capabilities to processes will
not solve this problem. Systems based on data-usage deci-
sions are required and thus systems which can provide data
security policies.

3. SYSTEM MODEL
We introduce the model which inspired the design of Con-

stroid: Usage Control with Authorisation, oBligations, and
Conditions (UCONABC). Based on this model this section
briefly outlines which policies Constroid is able to define on
data items.

3.1 Usage Control
Constroid is based on the family of UCONABC models as

introduced in [18]. It extends the classical notion of access
control and allows for modelling of numerous usage policies.
While it is able to describe classical models such as DAC,
MAC, and RBAC, it also meets the requirements of com-
mon DRM systems. With the dimensions of Authorisations,
Conditions, and Obligations, it addresses Constroid’s need
for expressive policies able to describe how personal data
should be safeguarded against potential misuse.

Subjects in Constroid are the operating system or Android
processes. This deviates from the classical UCON model
where a subject represents an individual human being. Al-
though the user of a smart-phone may authenticate to the
phone, we assume that there is basically one active user
executing processes in different contexts. Thus, subject at-
tributes can be any characteristic describing a process, e.g.
its user and/or group ID, its state, etc.

Through Constroid, subjects may obtain rights (see next
subsection) to operate on objects. The latter are represented
by so called data items (see Section 4.2). They are also as-
sociated with attributes which influence the decision about
the rights a subject may obtain for an object. Thus, such
attributes include the ownership of data items, i.e. which
process currently owns the item, which class it belongs to,
e.g. whether it is a contact item with a set of additional
information such as name, first name, address, etc. In gen-
eral, object attributes are associated with the object itself
and express certain characteristics.

Rights are privileges that can be assigned to a subject
to perform specific operations on an object. Constroid,
supports the basic rights create, read, update, and delete
(CRUD). They are enforced when accessing the data stored
in secondary memory. This basic set can be extended to
specific API functions if feasible mechanisms would be inte-
grated into the VM. Rights are assigned to a subject using
the decision function. It uses subject and object attributes
as well as authorisations, obligations, and conditions to de-
termine the set of appropriate rights.

In Constroid, authorisations (A) are functional predicates
which have to be evaluated for usage decisions. They are
used to decide whether a subject is allowed to perform the
request operations on an object, i.e. whether it is privileged
to obtain the appropriate rights for an object. UCON distin-
guishes pre-authorisation (preA) or ongoing-authorisations
(onA). Apart from preA, Constroid also allows for onA to
support policies which contain temporal or spacial constraints.

Obligations (B) in Constroid describe functional predi-
cates which verify that a process has performed before (preB)
operating or performs during (onB) the operation on an ob-
ject. An example for a preB predicate is a list of API calls
a subject (process) has to fulfil before transmitting a data
item to a specific server. An onB predicate could verify
that a process maintains an encrypted connection during its
execution to exchange particular data items.

Finally, conditions refer to environmental or system-related
factors. By evaluating states of the environment, e.g. GPS
location, speed, etc. or by analysing states of the system,

1480

e.g. system time, network connectivity, etc. the model can
provide information which is used to decide which rights
to assign to a subject. More specifically, conditions can be
used in the subject or object attributes to control the rights
assignment.

3.2 Policy Structure
Constroid defines policies exclusively for data items or re-

sources generating data. The user defines in which way data
must or must not be used. As Constroid’s main task is to
securely manage security policies our prototype is currently
limited to a subset of policies UCONABC can express. Fur-
ther, it is currently limited to the initial access to data.
Therefore, the user is restricted to the following subject and
object attributes.

Subject attributes can use Android’s user and group iden-
tifier of the process accessing the data. Later versions of this
system will also support particular states or traces of states.
Object attributes include the time of use, the processes al-
lowed to access an item, and a geographical location in which
the item can be accessed. To specify access rights the user is
limited to CRUD operations as mentioned before. These di-
mensions can be combined arbitrarily, i.e. complex policies
can be assembled by using the binary logical operators AND

and OR, and the unary logical operator NOT. Empty policies,
i.e. policies which do not specify any attributes or rights,
are most restrictive. Any access to a data item which is
associated with an empty policy results in a negative autho-
risation decision: Access is denied. Any data item generated
by a system resource is assigned a default policy associated
with this resource.

The specification of the data policies is accomplished by
using a simple user interface which allows the definition of
simple policy constraints as well as their combination.

4. INTEGRATION AND OPERATION
This section first sketches the architecture of Constroid,

gives a short example of its basic operation and describes
the single components in more detail.

4.1 Overview
The enforcement of our model is based on a reference mon-

itor concept. To guarantee that no application obtains unau-
thorised or unmonitored access to data items, we introduce
a middle-ware layer between the Android application layer
and the APIs enabling data access (see Figure 2).

We assume that Constroid is the only system component
in Android which offers an interface to access data. This in-
terface (a) is called the Application Content Provider (ACP)
and represents our reference monitor. It allows for CRUD-
operations on data objects. Every application is assigned
an individual instance of an ACP. It uses a Data Manager
(DM) that administrates all data processed or required by
an application (b).

Hence, the ACP implements the Policy Enforcement Point
(PEP) and allows data access only if the Policy Decision
Point (PDP) returns a positive check result. The PDP as
well as the other components required for policy handling,
i.e. the Policy Administration Point (PAP) and the Policy
Information Point (PIP), are implemented in an extra An-
droid Service (c), the Policy Handler Service (PHS) which is
integrated in the Android system image. As a consequence,
every ACP requires a connection to the policy handler to be

Component 1 Component n

Application Content Provider

Data
Manager

Service
Connection

Policy
Observer
call-back

Policy
Handler
Service

...

application
layer

system
layer

a

b d

c

e

Application

Policy
Observer

Policy
Checker

Figure 2: Basic framework design.

able to request policy checks (d).
The PDP performs one-time checks on data item access

policies and can monitor open data connections such as a
database cursor or file streams. The ACP can pass a call-
back interface (e) to the PHS to get notified as soon as the
conditions defined in an monitored policy are no longer met.

Remember the simple example from Section 2.2. Suppose
that data access in App A and B is implemented using Con-
stroid. Additionally, assume that data consist of the data
items name, road, and city.

Figure 3 shows the single steps required to query a data
item. In the first step the AddressViewer queries the Ad-
dressProvider for address a (1). Instead of accessing the
address DB directly the AddressProvider must now use the
interface of the ACP to query the appropriate data (2). The
ACP then uses the DM to request the desired address a (3).
To make an authorisation decision the PHS is called (4).
It checks the access permissions of the items of a: name,
road, and city. If all access policies are satisfied, a database
cursor is returned to the AddressProvider (5) which is then
forwarded to the AddressViewer (6). The requester can read
and display a.

4.2 Data Encapsulation
Content Providers, direct URI access, and the Android

API in general allow arbitrary manipulation of data. To en-
force access control policies on a fine-granular level, i.e. for
single data items, Constroid must describe how a data item
is defined. It must ensure that all operations performed on
a data item can be monitored, guarantee that a policy is
uniquely associated with its data-item, and that it is up-
dated consistently.

For this purpose, Constroid forces the developer to define
an XML file called Datastructures.xml. It is similar to the
AndroidManifest.xml file which must be defined for every
application. In this file the developer specifies how he in-
tents to structure the application data. A flat and recursive
structure as sketched in Figure 4 is used. A specification

AddressProviderAddressViewer

Application Content Provider

Data
Manager

Policy

Handler

Service

1

6
5 2

3
4

"App A" "App B"

Figure 3: Example for Data access with Constroid

1481

<datastructures>
<structure name="Contact">

<item name="name" type="string" />
<structure name="Address">
<item name="road" type="string" />
<item name="city" type="string" />

</structure>
</structure>

<datastructures>

Figure 4: Example for a data structure definition.

consists of a structure which consists of single data items

or other structures. So, data structures are templates for
data instances and consist of at least one data item and zero,
one, or more substructures. Data items are the smallest el-
ements of an data object and are assigned a name and type.
Figure 4 shows the specification of a contact structure which
itself contains an address structure.

The DM uses the definition in Datastructures.xml to
generate the appropriate storage structures used to store
and manage instances of data objects on the device. Fur-
ther, the DM is part of the reference monitor. This de-
sign decision was made because the system must have full
control over the usage of the DM and thus the application
data. Further, data structures are defined individually for
every application. So, integrating the data manager in the
reference monitor eases data handling.

Finally, as the DM becomes an intrinsic part of an applica-
tion the DB used for administrating the data of the DM can
be stored in the application directory with the UID of the
application. In this way the set of all data items is protected
by the existing security mechanisms of Android.

4.3 Policy Enforcement
Isolating raw data through a well defined API is one mea-

sure to enable fine-grained access control. The second step
associates security policies with all data items. A policy
is a set of constraints that specifies the context that must
be given for granting access to a particular data item. The
policy framework required to administrate, evaluate, and
enforce these policies will be described in this section.

4.3.1 Policy Administration Point
The PAP of Constroid is the PHS. It offers a user inter-

face which allows for the consistent administration of access
policies for every application. It also manages the default
policies for data items generated by applications. The secu-
rity architecture of Android forbids local implementations
of the PHS as it requires access to the security policies of
all applications. Therefore, it is implemented as an Android
service and is integrated in the system image.

The PHS further implements the policy decision point
(PDP) and the policy information point (PIP). This pre-
vents potential vulnerabilities because access policies never
leave the PHS and are fully protected by its application
sandbox. Additionally, the integration of PDP and PIP in-
creases the framework performance as it avoids additional
IPC calls.

4.3.2 Policy Decision Point
The policy decision point consists of two components: the

Policy Checker and the Policy Observer.

For simple requests, the policy checker (PC) performs one-
time checks on access policy sets and makes authorisation
decisions. The policy handler service queries the access poli-
cies using the PAP and passes them to the PC.

If an application component wants to access a set of data
items, e.g. data in the column of a DB, all associated access
policies must be satisfied. If the access to one of the data
items is not permitted, access to the whole set is forbid-
den. Therefore, based on the requested data, the PC first
computes a set policy. It unifies the constrains of all poli-
cies specified for the queried data items. This union is used
for making the authorisation decision. For the evaluation
of the policy the PC uses the PIP, e.g. to obtain location
information.

For entities which allow long-time access, such as database
cursors or file streams, the policy observer (PO) is required.
It allows the interruption of an open I/O-connection as soon
as its access policy is no longer satisfied. For this purpose,
the PO re-evaluates data policy constraints for policies reg-
istered with the observer if the corresponding context in-
formation was updated. Registered policies are observed as
long as their constraints are met. If a constraint check fails,
the corresponding access policy is unregistered from the PO
and the application that required the policy checking is noti-
fied via the PO callback component. In case an application
closes a database cursor or file stream the PHS un-registers
the appropriate access policy as well.

4.3.3 Policy Information Point
The PIP is implemented by the context information provider.

It offers an interface that allows to retrieve context informa-
tion required for checking the constraints of a policy. It fur-
ther allows POs to register for context information updates.
In case the PIP can not obtain specific context information,
e.g. it can not determine GPS data, it will inform any reg-
istered PO.

4.3.4 Policy Enforcement Point
Constroid enabled application components must use the

ACP to access data items. As it uses the DM to access data,
it is located between the application components requesting
data access and the DM (see Section 4.2). This position
allows for complete control over the data access.

The PEP holds a connection to the policy handler service.
If this connection cannot be established for any reason, no
authorisation decision can be requested and thus every data
access is denied by default.

When data access is requested the ACP identifies the set
of affected data items and requests an authorisation decision
from the PDP. Depending on this result the access to the
data item set is granted to the application component or it
is denied. For policies with spacial or temporal constraints,
the ACP can instruct the policy handler service to observe
access policies after an initial check by the PC. The PO
will notify the ACP as soon as one of the constraints in
the policies associated with the accessed data items is un-
satisfied. To enforce the policies the ACP will then close
any handle which is used to access the data.

5. EVALUATION
This section discusses the usability and security of the

middle-ware introduced with Constroid, its performance over-
head, and its impact on the usability.

1482

5.1 Security Analysis
The PHS must be publicly available. This implies that ev-

ery application component can access this service and try to
manipulate the policy database. In this section we consider a
malicious application not able to by-pass the established An-
droid security mechanisms and which can only access data
by means of the ACP. We identified the following possible
attacks the application can perform against Constroid to
gain unauthorised access to data, i.e. access to a data-item
which conflicts with its associated security policy.

The ACP relies on the PDP implemented in the PHS. A
denial-of-service attack may crash the PHS. However, if no
connection to this service can be established all access to
data objects is denied by default. Instead of crashing the
PHS an attack may try to replace it with another service by-
passing the PHS. As the PHS is part of the Constroid system
image it is protected by the certificate of the manufacturer.
Thus, the PHS can only be updated or replaced if the new
application was signed with the same key.

Instead of manipulating the PHS a malicious application
may try to guess identifiers of observed policies and try to
un-register them. In this case, Constroid would deny fur-
ther access to the data item. However, the operation to
un-register can only be called for data-items an application
owns. So, a malicious application does not obtain unautho-
rised access. It can only perform this denial-of-service attack
against itself. Another attack may aim to create new policies
for arbitrary items using the PHS. In this case a query tries
to generate a policy for a non-existing item. This policy will
be generated but is never used. If a policy already exists,
the request to create a policy will be ignored. Existing poli-
cies are not replaced. This also holds if the PHS needs to
install a new policy for a data-item just generated by the
application. If this policy already exists, it queries the user
to change the policy of the item. Only after this feedback
the item can be used in the framework. Also the deletion
of policies is a potential attack. However, this restricts ac-
cess to an item and results in a pure denial-of-service attack.
Unauthorised access is not possible.

Finally, an application may try to manipulate the PIP of
Constroid to annul spacial or temporal policy constraints.
However, the PIP uses system services to retrieve its in-
formation and is encapsulated in the PHS. Apart from a
physical manipulation which can not be performed by an
application but a real user, a manipulation is not possible.

Thus, apart from denial of service attacks, a malicious ap-
plication cannot successfully manipulate the policy system
to gain unauthorised access using the attacks listed above.

Finally, the security of the information protected by Con-
stroid depends on user decisions. Of course, we cannot pre-
vent the user from being incautious during policy definition.
However, policies are specified using temporal or spacial con-
texts on data items. In this way, Constroid allows for com-
prehensible interactions with the security enforcement.

5.2 Performance
We tested our prototype system on an HTC Desire. It

is equipped with a 1 GHz ARM processor, 576 MB RAM,
and a 16 GB microSD card. The device runs Android 2.2
without manufacturer additions. For our experiments we
implemented a simple application. It generated 1000 con-
tact instances of the data structure defined in Figure 4. The
content of these items was random. Similarly, the security

policies for these items were randomised time constraints.
Each contact was inserted into an empty DB using the API
offered by Constroid. We exclusively used inserts for our
benchmark as the overhead for this operation is maximal.
This experiment was repeated 50 times and showed a mean
execution time of 1933 ms with an average deviation of 55 ms
and a 99% confidence interval of 19.9 ms. We compared
our results with a standard Android 2.2 compilation. The
test application performed equivalent inserts into an SQLite
DB using the original Android API. This experiment was
also repeated 50 times and showed a mean execution time
of 1614 ms with an average deviation of 87 ms and a 99%
confidence interval of 31.8 ms. Thus, our prototype imple-
mentation shows a runtime overhead of 21-22%.

The storage overhead induced by the security policies can
not be stated precisely. First of all, we currently do not have
exact usage data. Thus, it is hard to claim that policies will
have an average complexity. Further, it is hard to estimate
how many different policies a user would define. He might
prefer different security contexts, such as work or home, and
assign these context-roles to his data. This would again de-
crease the memory overhead. We are also not sure how
fine-granular a developer may structure application data.
The higher the granularity a developer offers, the higher the
storage overhead. Finally, extending the dimensions usable
for policy definitions may additionally increase the storage
overhead.

5.3 Usability
Yet, no specific user interface has been implemented. Con-

stroid only provides the interfaces to manipulate data offered
by the ACP. However, we think that the actual security
policies required for Constroid can be abstracted in a feasi-
ble way. In particular, spacial and temporal attributes can
be visualised easily and comprehensible. Also the access of
other applications to local application data or the distribu-
tion of this data to other remote locations can be represented
in a feasible way. We further think that policies can be mod-
ified on-demand, i.e. if a usage constraint is not satisfied an
appropriate dialogue will help the user to understand the
consequences of his policy adjustments.

In the end, it is not clear whether our policy system will
overwhelm the user or empower him to transparently and
comprehensibly guide new data-centric security systems.

5.4 Application integration
Constroid must ensure that it can monitor any access to a

data item. Android, however, offers numerous ways to access
and manipulate data. Even if we would be able to wrap all
interfaces which allow data manipulation, we would not be
able to derive the precise data item manipulated by a certain
API call, e.g. in an SQL query or a binary file access.

Therefore, the design of Constroid must limit the freedom
of the developer. He must first model the application data.
This model is defined in a separate XML file. While this may
appear to imply extra work, this step is commonly required
by every developer who must administrate data.

Further, during every data access the developer has to
indicate which data item he wants to access. This implies
the use of interfaces specifically defined for Constroid. The
administration of the data, e.g. whether it is stored in binary
format or in a database, is managed by Constroid. Thus,
the developer can not implement efficient routines feasible

1483

for the type of data they process. However, the operating
system may provide optimised methods for specific types.

In case a developer decides not to use the Constroid frame-
work, he can circumvent this security system during appli-
cation design. As an example, he may declare one binary file
in his data model. Operating on this binary file is then up
to him. In this case, the user can only specify one policy for
the binary. Specifying policies for single data items will not
be possible and protection of private data is reduced to the
current security mechanisms of Android. We assume that a
security aware user will decide not to use such applications.

6. RELATED WORK
Our work encompasses purely theoretical concepts such as

in [22] and focuses on the realisation of these models in the
smart-phone OS Android. Therefore, this section focuses on
related work which deploy practical implementations.

To our knowledge, the Core Data for iOS [1] is the only
framework which uses some type of middle-ware layer to
structure application data. However, iOS only uses this
concept to tag data objects with meta data which support
internal services, such as the finder. Apart from simple con-
fidentiality flags for address or calendar entries which are
often enforced on the server, fine granular security policies
for data do not exist in widely spread smart-phone OSs.

Further, it is hard to compare our work with systems such
as Panorama [23], Trishul [13] or TaintDroid [6]. While
Constroid securely manages security policies, these systems
mainly focus on the tracking of properties. In particular,
Panorama and TaintDroid do not allow for the dynamic
specification of data security policies. However, they are
related as their precision can be improved when coupling
their taint tracking features with more precise, general pur-
pose policy management systems such as Constroid. Trishul
and the VM based flow control system described in [12] take
a step towards this approach and allow to process security
policies tagged to data. However, the authors do not de-
scribe how these policies are specified and administrated in
a secure way. Further, the employed policies only operate
on the file system or resource level. The mechanisms with
which items are linked to a particular and user-defined se-
curity policy remain open.

Porscha [16] and T-UCON [14], DRM frameworks based
on TaintDroid and Trishul respectively, allow content sources
to define security policies. The basic idea to protect individ-
ual data is close to our approach. However, these systems
focus on DRM protected content, Constroid aims at any
type of data processed by applications. Secondly, Porscha
and T-UCON only mediate the exchange of data between
applications, Constroid controls the access to data by means
of a reference monitor. Further, Porscha and T-UCON try
to safeguard specific data against unauthorised use on any
platform. The approach of Constroid is to shield personal
data from illegal use by any application.

Saint [17] is a framework that extends Androids permis-
sion mechanism by allowing to define rules for granting per-
missions. It defines application-centric rules. These con-
straints are static and enforced at runtime. Thus, it is again
the task of the developer to decide on the end user’s privacy.
Users can only disable or re-enable an application rule.

A similar framework is Apex [15]. It also extends An-
droid’s permission mechanism. It allows the user to grant
or deny a subset of the permissions requested by an applica-

tion. The permissions of an application can be reconfigured
at any time. In contrast to Saint, the user gets control over
the granted permissions instead of the application developer.

However, the permissions defined in Saint and Apex only
allow access to complete resources and remain application-
centric. This may not be desired in all application contexts.
Therefore, these extension are insufficient as they give not
enough control over the accessibility of specific data objects.

The same holds for Kirin [7]. It is a security service which
analyses the configuration of an Android application and
detects potential security issues. It primarily analyses the
permission requests and compares them with the security
policies set for a device. As Kirin is also based on dec-
larations and requests in the Android manifest it can still
not prevent or detect unauthorised data access. Its view on
data is too application-centric to distinguish unauthorised
requests within a resource, such as an address book.

The European project S3MS generated a series of publi-
cations [3, 4, 5, 19]. They implement the concept of security
by contract in slight variations and on different platforms.
Contracts describe a policy according to which an applica-
tion should behave. Obviously, this approach is application-
centric. The use of the application and its specific operations
on data have to be known during development. Security
policies which define the security requirements of a user for
a single item can not be specified.

Hence, Constroid clearly distinguishes from other related
work by deploying data-centric and user-defined, dynamic
policies, its application independence, and the finer granu-
larity of access policies.

7. CONCLUSION AND FUTURE WORK
In Android, large attention has been given to the secure

communication between applications [8] as well as to the
secure usage of system specific APIs. A large variety of per-
missions can be used and grouped to protect applications.
Several approaches refined these security mechanisms to me-
diate their deficiencies. Surprisingly, apart from highly spe-
cific solutions for DRM content, none of these approaches
tried to refine the security policy management for data and
to complement the traditional security management inher-
ited from the Linux system Android is based on.

To our knowledge, Constroid is the first system for a
smart-phone operating system which allows for the defini-
tion and storage of data-centric, fine-granular security poli-
cies. Data items can be tagged with data security policies
which are based on the UCONABC model. We developed
a prototype system for Constroid. It enables policies which
respect attributes such as the application identifier, the type
of operation during initial access, time, and location.

Our approach clearly differs from established permission
management systems in almost all smart-phone operating
systems. We focus on a data-centric instead of an application-
or process-centric permission system. This difference is cru-
cial, as it constitutes a first step towards breaking with the
widely established paradigm to define permissions during
distribution and development of applications. Current and
future application architectures, e.g. mashups or peer-to-
peer systems, require more user-centric approaches. Static,
application-centric, one-for-all permissions are simply not
feasible for applications which can be used in completely
different contexts, processing the same user data. Thus, de-
spite the restrictions Constroid imposes on the developer

1484

and in the face of the introduced overhead we think that
Constroid takes an important first step towards an alterna-
tive to currently established permission systems.

Constroid further paves the way for new security mecha-
nisms. Future work will investigate techniques which use the
security policies stored in Constroid to inspect the informa-
tion flow of single applications or their possible composites.
These techniques can enhance and exceed existing dynamic
enforcement mechanisms [6, 10, 14, 16]. We strive for the de-
velopment of static analysis and code inlining techniques for
Dalvik executables. Their application will enable us to in-
clude inline reference monitors to enforce security properties
of information flows which are compliant with the security
policies specified by the user using Constroid.

In order to apply Constroid in this domain we will first
conduct a case study with a Constroid version able to enforce
the full expressiveness of usage control, i.e. based on the
policies stored in Constroid it will track data and control its
usage. Datastructures with good performance will have to
be developed to reduce the number of database queries and
to allow for an efficient coupling between the Dalvik VM
and the Constroid policy administration.

8. REFERENCES
[1] Apple Inc. Core Data Tutorial for iOS. Available at:

http://developer.apple.com/library/ios/. June 2011.

[2] Apple Inc. Security Overview. Technical report,
Cupertino, CA, USA, July 2010.

[3] A. Castrucci, F. Martinelli, P. Mori, and F. Roperti.
Enhancing Java ME Security Support with Resource
Usage Monitoring. In 10th International Conference
on Information and Communications Security, volume
5308, pages 256–266, Birmingham, UK, October 2008.
Springer-Verlag Berlin Heidelberg.

[4] G. Costa, A. Lazouski, N. Dragoni, R. Saadi, and
D. Ingegneria. Security-by-Contract-with-Trust for
Mobile Devices. Journal of Wireless Mobile Networks,
Ubiquitous Computing and Dependable Applications
(JoWUA), 1(4):75–91, December 2010.

[5] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe.
Security-by-contract on the .NET platform.
Information Security Technical Report, 13(1):25–32,
January 2008.

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proceedings of
OSDI 2010, pages 1–6, Vancouver, BC, USA, October
2010. USENIX Association.

[7] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 235–245, New
York, NY, USA, 2009. ACM Press.

[8] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android Security. IEEE Security &
Privacy Magazine, 7(1):50–57, January 2009.

[9] C. Heath. Symbian OS Platform Security, Software
Development Using the Symbian OS Security
Architecture. John Wiley & Sons Ltd., 2006.

[10] J. Liu, M. D. George, K. Vikram, L. Waye, and A. C.

Myers. Fabric : A Platform for Secure Distributed
Computation and Storage. In 22nd ACM Symposium
on Operating Systems Principles, pages 312–334, Big
Sky, MT, USA, October 2009. ACM Press.

[11] Microsoft Corporation. Windows Phone 7 Security
Model. Technical report, December 2010.

[12] S. Nair, P. Simpson, B. Crispo, and A. Tanenbaum. A
Virtual Machine Based Information Flow Control
System for Policy Enforcement. Electronic Notes in
Theoretical Computer Science, 197(1):3–16, February
2008.

[13] S. Nair, P. Simpson, B. Crispo, and A. Tanenbaum.
Trishul : A Policy Enforcement Architecture for Java
Virtual Machines. Technical report, Vrije Universiteit,
Amsterdam, Netherlands, 2008.

[14] S. Nair, A. Tanenbaum, G. Gheorghe, and B. Crispo.
Enforcing DRM policies across applications. In
Proceedings of the 8th ACM workshop on Digital rights
management - DRM ’08, page 87, New York, New
York, USA, 2008. ACM Press.

[15] M. Nauman, S. Khan, and X. Zhang. Apex :
Extending Android Permission Model and
Enforcement with User-defined Runtime Constraints.
In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security,
pages 328–332, Beijing, China, 2010. ACM Press.

[16] M. Ongtang, K. Butler, and P. McDaniel. Porscha:
Policy Oriented Secure Content Handling in Android.
In Proceedings of the 26th Annual Computer Security
Applications Conference, New York, NY, USA,
December 2010. ACM Press.

[17] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically Rich Application-Centric
Security in Android. In 2009 Annual Computer
Security Applications Conference, pages 340–349.
IEEE Computer Society, December 2009.

[18] J. Park and R. Sandhu. The UCONABC usage control
model. ACM Transactions on Information and System
Security, 7(1):128–174, February 2004.

[19] P. Philippaerts. Security of Software on Mobile
Devices. PhD thesis, Department of Computer
Science, Faculty of Engineering, Leuven, Belgium,
October 2010.

[20] Research in Motion Ltd. BlackBerry Enterprise
Solution, Security Technical Overview for BlackBerry
Enterprise Server Version 4.1 Service Pack 6 and
BlackBerry Device Software Version 4.6. Technical
report, Canada, March 2009.

[21] R. Rogers, J. Lombardo, Z. Mednieks, and B. Meike.
Android Application Development: Programming with
the Google SDK. O’Reilly, Beijing, China, 2009.

[22] C. Schaefer. Usage Control Reference Monitor
Architecture. In Third International Workshop on
Security, Privacy and Trust in Pervasive and
Ubiquitous Computing (SecPerU 2007), pages 13–18.
Ieee, July 2007.

[23] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-Wide Information Flow
for Malware Detection and Analysis. In Proceedings of
the 14th ACM Conference on Computer and
Communications Security, pages 116–127, New York,
NY, USA, 2007. ACM Press.

1485

